• Title/Summary/Keyword: Head phantom

Search Result 286, Processing Time 0.026 seconds

Development of 1.0 Tesla Compact MRI System (1.0 Tesla 자기 공명 진단 장치의 개발)

  • Lee, H.K.;Oh, C.H.;Ahn, C.B.;Chang, Y.H.;Shin, D.W.;Lee, K.N.;Jang, K.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.129-134
    • /
    • 1996
  • 1차 년도 G-7 개발 과제로 수행된 자기 공명 진단 장치 (Magnetic Resonance Imaging System)의 개발 내용을 간략히 소개하였다. 성공적인 IT Compact 자기 공명 진단 장치의 완성을 위해 일차적으로 (1)RF (고주파), Gradient(경사 자계), Spectrometer 등의 Hard-ware 관련 MRI 핵심부분, (2) RF, Gradient, Spectrometer, Magnet 등의 각 Sub-system을 연결, 조합, 조정하여 하나의 체계적인 시스템으로 통합하고 운영하는 과정(System Integration), (3)사용자와 시스템을 연결하는 User Interface, Data Base Management, Real time 운영 SW 등과 (4)임상에 적용하여 구체적인 성능과 효용성을 확인하는 기술 등에 대하여 집중 연구하였다. 개발 방법은 (1)지난 16년간 국내에 축적 된 연구 개발 인력들을 최대한 활용하고 (2)연구 개발을 국제화 시켜 필요한 경우 부분별로 개발 인력을 해외에서 보완하고 (3)소수 정예 전문 인력 주의와 요소 기술 또는 중요 부품을 경쟁성 검토 후 필요 시 Out-sourcing 활용으로 최저의 비용으로 개발 기간을 최소화 하는 데 두었다. 개발된 1.0Tesla자기 공명 영상 장치는 미국 물리 학회에서 규격화한 Phantom및 임상 적용을 통하여 서울대 의대 연구 팀과 지속적으로 성능을 평가해 왔다. 개발된 시스템의 해상도는 $256{\times}256$ head 영상에서 1mm 이 하의 해상도를 가짐을 resolution phantom 을 통하여 확인할 수 있었고, $512{\times}512$ 영상에서 는 약 0.5 mm 의 물체를 분리 해냄으로써 외제 시스템들 보다 우수하게 평가 되었다. 차폐 경사코일의 Eddy current영향은2%이내로 촬영 시 영향은 거의 무시할 수 있었다. 또한, 개발된 영상 기법들, 즉 Multislice/Multi Echo, Oblique angle imaging, 64 Echo train을 갖는 고속 촬영 기술들이 자기 공명 장치에 장착되어 임상 적용에 문제가 없도록 하였다. 또한 20mT/m/Amp의 강력한 능동 차폐 경사 자계 코일(Active Shield Gradient Coil)을 기본 사양으로 하고, 수신단을 최대 6개로 확장토록 하여 2차년도의 초고속 촬영 기법(EPI) 및 Phased Array 코일 촬영이 가능토록 하였다. 1차 년도 개발 과제 수행 결과와 향후 개발 과제를 바탕으로 최종 목표인 국제 경쟁력이 있는 자기 공명 진단 장치 즉 기능과 영상의 질은 선진국 제품과 동일하거나 우수하되, 저가격을 구현한 상용화 제품이 완성되어, 첨단 의료기기로서 산업 구조 고도화에 기여하고 수입대체 뿐만 아니 라 수출을 통한 국익 창출과 국가의 기술을 통한 위상 제고에 기여되길 기대한다.

  • PDF

Characterization of Physical Processes and Secondary Particle Generation in Radiation Dose Enhancement for Megavoltage X-rays (MV X선의 방사선 선량 증강 현상에서 물리적 특성과 이차입자의 발생)

  • Hwang, Chulhwan;Kim, JungHoon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.791-799
    • /
    • 2019
  • We evaluated the physical properties that occur to dose enhancement and changes from secondary particle production resulting from the interaction between enhancement material. Geant4 was used to perform a Monte Carlo simulation, and the medical internal radiation dose (MIRD) head phantom were employed. X-rays of 4, 6, 10, 15, 18, and 25 MV were used. Aurum (Au) and gadolinium (Gd) were applied within the tumor volume at 10, 20, and 30 mg/g, and an experiment using soft tissue exclusively was concomitantly performed for comparison. Also, particle fluence and initial kinetic energy of secondary particle of interaction were measured to calculate equivalent doses using the radiation weight factor. The properties of physical interaction by the radiation enhancement material showed the great increased in photoelectric effect as compared to the compton scattering and pair production, occurred with the highest, in aurum and gadolinium it is shown in common. The photonuclear effect frequency increased as the energy increased, thereby increasing secondary particle production, including alpha particles, protons, and neutrons. During dose enhancement using aurum, a maximum 424.25-fold increase in the equivalent dose due to neutrons was observed. This study was Monte Carlo simulation corresponds to the physical process of energy transmission in dose enhancement. Its results may be used as a basis for future in vivo and in vitro experiments aiming to improve effects of dose enhancement.

Usefulness Evaluation of Algorithm Conversion Method for Dose Reduction in Brain CT Examination (두부 CT 검사에서 선량감소를 위한 알고리즘 변환방법의 유용성 평가)

  • Kim, Hyeon ju
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.3
    • /
    • pp.481-487
    • /
    • 2019
  • Based on the scan conditions and algorithms that are generally applied during examinations during head CT examinations, the results of dose reduction through the application of algorithm changes were investigated through experiments. As a result, the dose reduction effect was more meaningful for the change of perfusion than for the tube voltage, and the quality evaluation using the brain phantom was relatively less reduced when the dose was reduced after the application of the Bone algorithm, especially for the application of the Bone algorithm, and the deviation of the mean CT number or Pixel value was measured relatively significantly. In other words, the conditions under which dose was reduced and quality was maintained to reduce the patient's exposure dose and obtain images of the same quality were obtained with the application of the Smooth algorithm and the resulting values of 120 kVp, 160 mA. At this point, doses were reduced by about 28%, and the mean CT number or Pixel value was also measured with relatively little error. If the results are applied to patients who visit the hospital for examination or follow-up after applying various algorithms and follow up scan conditions, the results are considered to be very useful in reducing patient exposure dose.

The Study of Appropriate X-ray Tube Angle for the Anterior-posterior Chest Radiography Using S-align Function (S-align 기능을 이용한 흉부 전·후 방향 검사 시 적절한 X선관 각도에 관한 연구)

  • Park, Myeong-Ju;Joo, Young-Cheol;Kim, Min-Suk;Yuk, Jeong-Won;Kim, Han-Yong;Kim, Dong-Hwan
    • Journal of radiological science and technology
    • /
    • v.45 no.4
    • /
    • pp.299-304
    • /
    • 2022
  • This study uses the 'S-align' function to present a reference value of the X-ray tube angle for the realization of an image similar to that of the chest PA image during chest AP radiography. This study targeted dummy phantom and used a 17"×17" DR image receptor. The irradiation conditions were 110 kVp, 160 mA, 50 ms, and the distance between the central X-ray and the image receptor was set to 180 cm and 110 cm, respectively. The end of the catheter was placed at the 11th thoracic height to indicate the nasogastric tube. In the case of lung apex length measurement, the mean value of measurement was 30.53±0.47 in PA. T 0°, TCA 5~25°, TCE 5~15° were 21.07±0.29, 27.60±0.21, 34.13±0.44, 39.86±0.31, 45.96±0.61 mm, 54.13±0.37 mm, 16.16±0.46 mm, 9.81±0.35 mm, 2.75±0.30 mm, respectively. For the depth of the catheter end, the average value measured at PA was 6.70±0.31 mm. T 0°, TCA 5~25°, TCE 5~15° were 15.72±0.38 mm, 24.10±0.50 mm, 29.24±0.86 mm, 34.35±0.35 mm, 41.06±1.08 mm, 48.07±0.38 mm, 12.85±0.25 mm, 7.92±0.36 mm, 3.01±0.39 mm, respectively. The length of the lung apex was similar to that of chest PA when the angle of incidence was adjusted from 5° to 10° in the leg direction, and the depth of the catheter tip was most similar when the X-ray tube angle was incident at 10° in the head direction. Therefore, To change the X-ray tube angle according to the purpose of the examination during the chest AP radiography using 'S-align' function is considered necessary.

Commissioning Experience of Tri-Cobalt-60 MRI-guided Radiation Therapy System (자기공명영상유도 Co-60 기반 방사선치료기기의 커미셔닝 경험)

  • Park, Jong Min;Park, So-Yeon;Wu, Hong-Gyun;Kim, Jung-in
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.193-200
    • /
    • 2015
  • The aim of this study is to present commissioning results of the ViewRay system. We verified safety functions of the ViewRay system. For imaging system, we acquired signal to noise ratio (SNR) and image uniformity. In addition, we checked spatial integrity of the image. Couch movement accuracy and coincidence of isocenters (radiation therapy system, imaging system and virtual isocneter) was verified. Accuracy of MLC positioing was checked. We performed reference dosimetry according to American Association of Physicists in Medicine (AAPM) Task Group 51 (TG-51) in water phantom for head 1 and 3. The deviations between measurements and calculation of percent depth dose (PDD) and output factor were evaluated. Finally, we performed gamma evaluations with a total of 8 IMRT plans as an end-to-end (E2E) test of the system. Every safety system of ViewRay operated properly. The values of SNR and Uniformity met the tolerance level. Every point within 10 cm and 17.5 cm radii about the isocenter showed deviations less than 1 mm and 2 mm, respectively. The average couch movement errors in transverse (x), longitudinal (y) and vertical (z) directions were 0.2 mm, 0.1 mm and 0.2 mm, respectively. The deviations between radiation isocenter and virtual isocenter in x, y and z directions were 0 mm, 0 mm and 0.3 mm, respectively. Those between virtual isocenter and imaging isocenter were 0.6 mm, 0.5 mm and 0.2 mm, respectively. The average MLC positioning errors were less than 0.6 mm. The deviations of output, PDDs between mesured vs. BJR supplement 25, PDDs between measured and calculated and output factors of each head were less than 0.5%, 1%, 1% and 2%, respectively. For E2E test, average gamma passing rate with 3%/3 mm criterion was $99.9%{\pm}0.1%$.

Evaluation of Image Noise and Radiation Dose Analysis In Brain CT Using ASIR(Adaptive Statistical Iterative Reconstruction) (ASIR를 이용한 두부 CT의 영상 잡음 평가 및 피폭선량 분석)

  • Jang, Hyon-Chol;Kim, Kyeong-Keun;Cho, Jae-Hwan;Seo, Jeong-Min;Lee, Haeng-Ki
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.5
    • /
    • pp.357-363
    • /
    • 2012
  • The purpose of this study on head computed tomography scan corporate reorganization adaptive iteration algorithm using the statistical noise, and quality assessment, reduction of dose was evaluated. Head CT examinations do not apply ASIR group [A group], ASIR 50 applies a group [B group] were divided into examinations. B group of each 46.9 %, 48.2 %, 43.2 %, and 47.9 % the measured in the phantom research result of measurement of CT noise average were reduced more than A group in the central part (A) and peripheral unit (B, C, D). CT number was measured with the quantitive analytical method in the display-image quality evaluation and about noise was analyze. There was A group and difference which the image noise notes statistically between B. And A group was high so that the image noise could note than B group (31.87 HUs, 31.78 HUs, 26.6 HUs, 30.42 HU P<0.05). The score of the observer 1 of A group evaluated 73.17 on 74.2 at the result 80 half tone dot of evaluating by the qualitative evaluation method of the image by the bean curd clinical image evaluation table. And the score of the observer 1 of B group evaluated 71.77 on 72.47. There was no difference (P>0.05) noted statistically. And the inappropriate image was shown to the diagnosis. As to the exposure dose, by examination by applying ASIR 50 % there was no decline in quality of the image, 47.6 % could reduce the radiation dose. In conclusion, if ASIR is applied to the clinical part, it is considered with the dose written much more that examination is possible. And when examination, it is considered that it becomes the positive factor when the examiner determines.

Monte Carlo Study Using GEANT4 of Cyberknife Stereotactic Radiosurgery System (GEANT4를 이용한 정위적 사이버나이프 선량분포의 계산과 측정에 관한 연구)

  • Lee, Chung-Il;Shin, Jae-Won;Shin, Hun-Joo;Jung, Jae-Yong;Kim, Yon-Lae;Min, Jeong-Hwan;Hong, Seung-Woo;Chung, Su-Mi;Jung, Won-Gyun;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.192-200
    • /
    • 2010
  • Cyberknife with small field size is more difficult and complex for dosimetry compared with conventional radiotherapy due to electronic disequilibrium, steep dose gradients and spectrum change of photons and electrons. The purpose of this study demonstrate the usefulness of Geant4 as verification tool of measurement dose for delivering accurate dose by comparing measurement data using the diode detector with results by Geant4 simulation. The development of Monte Carlo Model for Cyberknife was done through the two-step process. In the first step, the treatment head was simulated and Bremsstrahlung spectrum was calculated. Secondly, percent depth dose (PDD) was calculated for six cones with different size, i.e., 5 mm, 10 mm, 20 mm, 30 mm, 50 mm and 60 mm in the model of water phantom. The relative output factor was calculated about 12 fields from 5 mm to 60 mm and then it compared with measurement data by the diode detector. The beam profiles and depth profiles were calculated about different six cones and about each depth of 1.5 cm, 10 cm and 20 cm, respectively. The results about PDD were shown the error the less than 2% which means acceptable in clinical setting. For comparison of relative output factors, the difference was less than 3% in the cones lager than 7.5 mm. However, there was the difference of 6.91% in the 5 mm cone. Although beam profiles were shown the difference less than 2% in the cones larger than 20 mm, there was the error less than 3.5% in the cones smaller than 20 mm. From results, we could demonstrate the usefulness of Geant4 as dose verification tool.

Study on the Various Size Dependence of Ionization Chamber in IMRT Measurement to Improve Dose-accuracy (세기조절 방사선치료(IMRT)의 환자 정도관리에서 다양한 이온전리함 볼륨이 정확도에 미치는 영향)

  • Kim, Sun-Young;Lee, Doo-Hyun;Cho, Jung-Keun;Jung, Do-Hyeung;Kim, Ho-Sick;Choi, Gye-Sook
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.1
    • /
    • pp.1-5
    • /
    • 2006
  • Purpose: IMRT quality assurance(Q.A) is consist of the absolute dosimetry using ionization chamber and relative dosimetry using the film. We have in general used 0.015 cc ionization chamber, because small size and measure the point dose. But this ionization chamber is too small to give an accurate measurement value. In this study, we have examined the degree of calculated to measured dose difference in intensity modulated radiotherapy(IMRT) based on the observed/expected ratio using various kinds of ion chambers, which were used for absolute dosimetry. Materials and Methods: we peformed the 6 cases of IMRT sliding-window method for head and neck cases. Radiation was delivered by using a Clinac 21EX unit(Varian, USA) generating a 6 MV x-ray beam, which is equipped with an integrated multileaf collimator. The dose rate for IMRT treatment is set to 300 MU/min. The ion chamber was located 5cm below the surface of phantom giving 100cm as a source-axis distance(SAD). The various types of ion chambers were used including 0.015cc(pin point type 31014, PTW. Germany), 0.125 cc(micro type 31002, PTW, Germany) and 0.6 cc(famer type 30002, PTW, Germany). The measurement point was carefully chosen to be located at low-gradient area. Results: The experimental results show that the average differences between plan value and measured value are ${\pm}0.91%$ for 0.015 cc pin point chamber, ${\pm}0.52%$ for 0.125 cc micro type chamber and ${\pm}0.76%$ for farmer type 0.6cc chamber. The 0.125 cc micro type chamber is appropriate size for dose measure in IMRT. Conclusion: IMRT Q.A is the important procedure. Based on the various types of ion chamber measurements, we have demonstrated that the dose discrepancy between calculated dose distribution and measured dose distribution for IMRT plans is dependent on the size of ion chambers. The reason is small size ionization chamber have the high signal-to-noise ratio and big size ionization chamber is not located accurate measurement point. Therefore our results suggest the 0.125 cc farmer type chamber is appropriate size for dose measure in IMRT.

  • PDF

Evaluation on the Accuracy of Targeting Error Correction Through the Application of Target Locating System in Robotic CyberKnife (로봇 사이버나이프에서 위치인식시스템을 이용한 Targeting Error값 보정의 정확성 평가)

  • Jeong, Young-Joon;Jung, Jae-Hong;Lim, Kwang-Chae;Cho, Eun-Ju
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Purpose: The purpose is to evaluate the accuracy of correcting the targeting error through the Target Location System (TLS) for the location change error of the reference point which arises from the movement or motion of patient during the treatment using the CyberKnife. Materials and Methods: In this test, Gafchromic MD-55 film was inserted into the head and neck phantom to analyze the accuracy of the targeting, and then the 6 MV X-ray of CyberKnife (CyberKnife Robotic Radiosurgery System G4, Accuray, US) was irradiated. End to End (E2E) program was used to analyze the accuracy of targeting, which is provided by Accuray Corporation. To compute the error of the targeting, the test was carried out with the films that were irradiated 12 times by maintaining the distance within the rage of $0{\pm}0.2\;mm$ toward x, y, z from the reference point and maintaining the angle within the rage of $0{\pm}0.2^{\circ}$ toward roll, pitch, yaw, and then with the films which were irradiated 6 times by applying intentional movement. And the correlation in the average value of the reference film and the test film were analyzed through independent samples t-test. In addition, the consistency of dose distribution through gamma-index method (dose difference: 3%) was quantified, compared, and analyzed by varying the distance to agreement (DTA) to 1 mm, 1.5 mm, 2 mm, respectively. Results: E2E test result indicated that the average error of the reference film was 0.405 mm and the standard deviation was 0.069 mm. The average error of the test film was 0.413 mm with the standard deviation of 0.121 mm. The result of independent sampling t-test for both averages showed that the significant probability was P=0.836 (confidence level: 95%). Besides, by comparing the consistency of dose distribution of DTA through 1 mm, 1.5 mm, 2 mm, it was found that the average dose distribution of axial film was 95.04%, 97.56%, 98.13%, respectively in 3,314 locations of the reference film, consistent with the average dose distribution of sagittal film that was 95.47%, 97.68%, 98.47%, respectively. By comparing with the test film, it was found that the average dose distribution of axial film was 96.38%, 97.57%, 98.04%, respectively, at 3,323 locations, consistent with the average dose distribution of sagittal film which was 95.50%, 97.87%, 98.36%, respectively. Conclusion: Robotic CyberKnife traces and complements in real time the error in the location change of the reference point caused by the motion or movement of patient during the treatment and provides the accuracy with the consistency of over 95% dose distribution and the targeting error below 1 mm.

  • PDF

Development of a Thermoplastic Oral Compensator for Improving Dose Uniformity in Radiation Therapy for Head and Neck Cancer (두경부암 방사선치료 시 선량 균일도 향상을 위한 Thermoplastic 구강 보상체의 개발)

  • Choi, Joon-Yong;Won, Young-Jin;Park, Ji-Yeon;Kim, Jong-Won;Moon, Bong-Ki;Yoon, Hyong-Geun;Moon, Soo-Ho;Jeon, Jong-Byeong;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.269-278
    • /
    • 2012
  • Aquaplast Thermoplastic (AT) is a tissue-equivalent oral compensator that has been developed to improve dose uniformity at the common boundary and around the treated area during radiotherapy in patients with head and neck cancer. In order to assess the usefulness of AT, the degree of improvement in dose distribution and physical properties were compared to those of oral compensators made using paraffin, alginate, and putty, which are materials conventionally used in dental imprinting. To assess the physical properties, strength evaluations (compression and drop evaluations) and natural deformation evaluations (volume change over time) were performed; a Gafchromic EBT2 film and a glass dosimeter inserted into a developed phantom for dose verification were used to measure the common boundary dose and the beam profile to assess the dose delivery. When the natural deformation of the oral compensators was assessed over a two-month period, alginate exhibited a maximum of 80% change in volume from moisture evaporation, while the remaining tissue-equivalent properties, including those of AT, showed a change in volume that was less than 3%. In a free-fall test at a height of 1.5 m (repeated 5 times as a strength evaluation), paraffin was easily damaged by the impact, but AT exhibited no damage from the fall. In compressive strength testing, AT was not destroyed even at 8 times the force needed for paraffin. In dose verification using a glass dosimeter, the results showed that in a single test, the tissue-equivalent (about 80 Hounsfield Units [HU]) AT delivered about 4.9% lower surface dose in terms of delivery of an output coefficient (monitor unit), which was 4% lower than putty and exhibited a value of about 1,000 HU or higher during a dose delivery of the same formulation. In addition, when the incident direction of the beam was used as a reference, the uniformity of the dose, as assessed from the beam profile at the boundary after passing through the oral compensators, was 11.41, 3.98, and 4.30 for air, AT, and putty, respectively. The AT oral compensator had a higher strength and lower probability of material transformation than the oral compensators conventionally used as a tissue-equivalent material, and a uniform dose distribution was successfully formed at the boundary and surrounding area including the mouth. It was also possible to deliver a uniformly formulated dose and reduce the skin dose delivery.