• Title/Summary/Keyword: Head connection system

Search Result 38, Processing Time 0.024 seconds

Reinforcing Method for Steel Pile Head connection in RC footing (분할된 원호판을 이용한 강관두부보강법에 관한 연구)

  • Noh, Sam-Young;Kim, Kwang-Mo;Han, Seok-Hee;Min, In-Gi
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.476-485
    • /
    • 2006
  • The connection system of steel pile and RC footing is an important structure, because the total load of upper construction should be transferred through this joint construction of different two materials-steel and RC-with strongly changed section area. Although many connection systems have been developed, their structural and economical efficiency and workability are often insufficient. Therefore, a new connecting system was developed to improve the problems of current systems. The divided arc plate could improve the workability and economical efficiency, structural efficiency could be reached by welding construction. The main purpose of the research is to evaluate the structural behavior of the new designed connection system through experiments and numerical analysis.

  • PDF

An Experimental Study on the Stability of IER according to the Head Connection Method (지주식흙막이의 두부 연결 방법에 따른 안정성에 관한 실험적 연구)

  • Yoo, Jae-Won;Im, Jong-Chul;Seo, Min-Su;Kim, Chang-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.12
    • /
    • pp.45-57
    • /
    • 2016
  • The Inclined Earth Retaining Structure (IER) is the structure using an integrated system of both front supports and inclined back supports to increase the stability for excavation. The IER is a structurally stable temporary excavation method using the back supports restraining the lateral displacement of the front supports as stabilizing piles. The back supports connected to the front supports significantly reduce the earth pressure acting on both the front wall and the front supports by distributing it to the back supports in order to increase the structural stability. In this study, mechanical behaviors of IER according to the head connection type using fixed- or hinge-connection were found by performing numerical analysis and laboratory model tests in the sandy ground. The maximum lateral displacement of fixed-connection was 88% of that of hinge-connection in the numerical analysis. The lateral displacement of fixed-connection was 7% of that of hinge-connection in the laboratory model test results. Furthermore, the earth pressure of the fixed-connection was 67% of that of the hinge-connection in the shear-strain analysis results of the model ground.

Analysis on the Rigid Connections between the Large Diameter Drilled Shaft and the Pile Cap for the Sea-Crossing Bridges with Multiple Pile Foundations (다주식 기초 해상교량에서 대구경 현장타설말뚝과 파일캡의 강결합에 대한 분석)

  • Cho, Sung-Min;Park, Sang-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.343-358
    • /
    • 2008
  • Piles of a bridge pier are connected with a column through a pile cap(footing). Behavior of the pile foundation can be different according to the connection method between piles and the pile cap. This difference causes a change of the design method. Connection methods between pile heads and the pile cap are divided into two groups ; rigid connections and hinge connections. KHBDC(Korea Highway Bridge Design Code) has specified to use rigid connection method for the highway bridge. In the rigid connection method, maximum bending moment of a pile occurs at the pile head and this helps the pile to prevent the excessive displacement. Rigid methods are also good to improve the seismic performance. However some specifications prescribe that conservative results through investigations for both the fixed-head condition and the free-head condition should be reflected in the design. This statement may induce an over-estimated design for the bridge which have very good quality structures with casing covered drilled shafts and the PC-house contained pile cap. Because the assumption of free-head conditions (hinge connections) are unreal for the elevated pile cap system with multiple piles of the long span sea-crossing bridges. On the other hand, elastic displacement method to evaluate the pile reactions under the pile cap is not suitable for this type of bridges due to impractical assumptions. So, full modeling techniques which analyze the superstructure and the substructure simultaneously should be performed. Loads and stress state of the very large diameter drilled shaft and the pile cap for Incheon Bridge which will the longest bridge in Korea were investigated through the full modeling for rigid connection conditions.

  • PDF

The Design of an Integrated ECU and Navigation Information based IoT Head-Up Display System for Vehicles (ECU와 내비게이션 정보를 융합한 IoT Head Up Display(HUD) 시스템 설계)

  • Kook, Joongjin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.172-177
    • /
    • 2021
  • The HUD (Head-up Display) device for vehicles has gradually been advanced in connection with ADAS (Advanced Driver Assistant System) for the safety and the convenience of driving. In this paper, the major features (e.g. speed, RPM, etc.) of vehicles is received through the ECU and the route information is received through the navigating API, configurating the integrated GUI. And, the optical system is configured based on DLP (Digital Light Processing) to evaluate the visibility depending on the resolution change of the GUI. The IoT HUD system proposed in this paper has the scalability to flexibly add not only the ECU but also various cloud-based driving-related information.

Analysis on the Rigid Connections of the Drilled Shaft with the Cap for Multiple Pile Foundations (현장타설말뚝을 적용한 다주식 기초에서 말뚝과 캡의 강결합에 대한 분석)

  • Cho, Sung-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.7
    • /
    • pp.61-73
    • /
    • 2008
  • Piles of a bridge pier are connected with the column through the pile cap (footing). Behavior of the pile foundation can be different according to the connection method between piles and the pile cap. Connection methods between pile heads and the pile cap are divided into two groups : rigid connections and hinge connections. Domestic design code has been specified to use rigid connection method for the highway bridge. In the rigid connection method, maximum bending moment of a pile occurs at the pile head and this helps the pile to prevent the excessive displacement. Rigid methods are also good to improve the seismic performance. However, some specifications prescribe that conservative results through investigations of both the fixed-head condition and the free-head condition should be reflected in the design. This statement may induce an over-estimated design for the bridge which has high-quality structures with casing covered drilled shafts and the PC-house contained pile cap. Because the assumption of free-head conditions (hinge connections) is unreal for the elevated pile cap system with multiple piles of the long span sea-crossing bridges. On the other hand, elastic displacement method to evaluate the pile reactions under the pile cap is not suitable for this type of bridges due to impractical assumptions. So, full modeling techniques which analyze the superstructure and the substructure simultaneously should be performed. Loads and stress state of the large diameter drilled shaft and the pile cap for Incheon Bridge which will be the longest bridge of Korea were investigated through the full modeling for rigid connection conditions.

A Literature Study on PyoBon·GeunGyul Theory (표본(標本)·근결(根結) 이론과 임상응용에 관한 고찰(考察))

  • Jang, Jun-Hyouk;Kim, Kyung-Ho
    • Journal of Acupuncture Research
    • /
    • v.17 no.1
    • /
    • pp.175-187
    • /
    • 2000
  • PyoBon GeunGyul - one of the twelve regular meridians theory - play a important role on the principle of point selection and point prescription in acumoxibustion. PyoBon explain the connection of the concentration and diffusion of channel qi, GeunGyul explain the relation of both poles of channels flow. So, Geun and Bon means the starting point of channel qi, and Pyo and Gyul means the terminal point of channel qi. But the flow of channel qi on PyoBon GeunGyul different from today's circulation courses of twelve regular channels based on Kyungmaek(經脈) chapter of Youngchu. Thus this study investigate the contents of PyoBon GeunGyul and consider its connection with channel flow. The results are as follows : 1. PyoBon GeunGyul theory explain that the relation of the limbs and trunk at meridian and emphasize that the connection of meridian and the importance of the limb acupoints. 2. PyoBon GeunGyul theory can be understandable in the view of the primordial qi and explain that the primordial qi of twelve regular channels acts from the limbs to the trunk. 3. PyoBon GeunGyul theory is based on the system of primordial qi channel which circulates from fingers and toes facing toward heart or the head, different from today's circulation courses of twelve regular meridians. 4. PyoBon GeunGyul theory act as a basis of principle of a part or distant point selection which applicated widely in acumoxibustion.

  • PDF

Ultimate strength of composite structure with different degrees of shear connection

  • Kim, Sang-Hyo;Jung, Chi-Young;Ahn, Jin-Hee
    • Steel and Composite Structures
    • /
    • v.11 no.5
    • /
    • pp.375-390
    • /
    • 2011
  • Composite beam, which combined the material characteristic of the steel and concrete, has been widely used in the construction of various building and bridge system. For the effective application of the composite beam, the composite action on the composite interface between the concrete element and the steel element should be achieved by shear connectors. The behavioral characteristics of composite beam are related with the degree of interaction and the degree of shear connection according to the shear strength and shear stiffness of the stud shear connectors. These two concepts are also affected by the number of installed shear connector and the strength of composite materials. In this study, experimental and analytical evaluations of the degree of shear connection affected by stud diameter were conducted, and the relationship between structural behavior and the degree of shear connection was verified. The very small difference among the ultimate loads of the specimens depending on the change of the degree of connection was possibly because of the dependence of the ultimate load on the characteristic of plastic moment of the composite beam.

Nonlinear numerical analysis of influence of pile inclination on the seismic response of soil-pile-structure system

  • Lina Jaber;Reda Mezeh;Zeinab Zein;Marc Azab;Marwan Sadek
    • Geomechanics and Engineering
    • /
    • v.34 no.4
    • /
    • pp.437-447
    • /
    • 2023
  • Inclined piles are commonly used in civil engineering constructions where significant lateral resistance is required. Many researchers proved their positive performance on the seismic behavior of the supported structure and the piles themselves. However, most of these numerical studies were done within the framework of linear elastic or elastoplastic soil behavior, neglecting therefore the soil non-linearity at low and moderate soil strains which is questionable and could be misleading in dynamic analysis. The main objective of this study is to examine the influence of the pile inclination on the seismic performance of the soil-pile-structure system when both the linear elastic and the nonlinear soil models are employed. Based on the comparative responses, the adequacy of the soil's linear elastic behavior will be therefore evaluated. The analysis is conducted by generating a three-dimensional finite difference model, where a full interaction between the soil, structure, and inclined piles is considered. The numerical survey proved that the pile inclination can have a significant impact on the internal forces generated by seismic activity, specifically on the bending moment and shear forces. The main disadvantages of using inclined piles in this system are the bending forces at the head and pile-to-head connection. It is crucial to account for soil nonlinearity to accurately assess the seismic response of the soil-pile-structure system.

Design, Deployment and Implementation of Local Area Network (LAN) at BAEC Head Quarter

  • Osman Goni;Md. Abu Shameem
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.141-146
    • /
    • 2024
  • A local area network (LAN) is a computer network within a small geographical area such as a home, school, computer laboratory, office building or group of buildings. A LAN is composed of interconnected workstations and personal computers which are each capable of accessing and sharing data and devices, such as printers, scanners and data storage devices, anywhere on the LAN. LANs are characterized by higher communication and data transfer rates and the lack of any need for leased communication lines. Communication between remote parties can be achieved through a process called Networking, involving the connection of computers, media and networking devices. When we talk about networks, we need to keep in mind three concepts, distributed processing, network criteria and network structure. The purpose of this Network is to design a Local Area Network (LAN) for a BAEC (Bangladesh Atomic Energy Commission) Head Quarter and implement security measures to protect network resources and system services. To do so, we will deal with the physical and logical design of a LAN. The goal of this Network is to examine of the Local Area Network set up for a BAEC HQ and build a secure LAN system.

Logistic Supportability Improvement Program for the Future Main Battle Tank (고장진단체계 구축을 통한 미래전차의 군수지원성 향상 방안 연구)

  • Jung, ChangMo;Lee, MyungChun
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.34-42
    • /
    • 2005
  • Logistic Support Analysis(LSA) and Logistic Supportability Review must be carried out as soon as possible in development stage in order to minimize operation/maintenance cost that head the list of weapon cost and improve logistic supportability of the weapon system. And the result must be used for hardware designs to set up to be able to input to the system design and logistic support elements. Therefore Logistic Support Elements must be planed/developed/supplied with the main combat system concurrently and performance and logistic supportability of the comabat system had better be improved mutually. This report describes maintenance concept changes of weapon systems, fault diagnosis function and test equipment state on the domestic MBT(main battle tank). And then it presents application and intensification of itself fault diagnosis system for a domestic future MBT considering connection with IETM(Interactive Electronic Technical Manual) and TE(Test Equipment).

  • PDF