• Title/Summary/Keyword: Hazardous Chemicals

Search Result 350, Processing Time 0.022 seconds

Developmental Toxicity of Alkylphenols in Amphibians: A Review (알킬페놀류 화합물의 양서류 발생독성: 종설)

  • Park, Chan-Jin;Ahn, Hae-Sun;Ahn, Hyo-Min;Gye, Myung-Chan
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.2
    • /
    • pp.103-112
    • /
    • 2011
  • Aquatic contamination by organic pollutants has been a suspected reason for rapid decrease of amphibian populations whose embryonic and larval stages are in an aquatic environment. Amphibian embryos can be a useful model to study the ecoctoxicologial impacts of aquatic pollutants. The obtained toxicological data are useful references for the management of aquatic pollutants in public health because amphibia share many developmental events with terrestrial vertebrates including humans. Safety guidelines for the toxicological effects of aquatic contaminants of chemicals identified as hazardous should be addressed at multiple endpoints. Alkylphenols have been widely-used in agricultural, industrial, and household activities; they contaminate and can persist in aquatic environments. Exposure to alkylphenols results in endocrine disruption in aquatic animals. In this review, we summarize the developmental toxicities of alkylphenols in amphibian embryos and larva according to the exposure route, chemical concentration, duration of exposure, and affected developmental stage together with mechanisms of toxicity and typical patterns of developmental abnormality. The merits of amphibian embryos as a toxicity test model for mid- to long-term exposure to aquatic pollutants are discussed proposed.

Effect of Sn Decorated MWCNT Particle on Microstructures and Bonding Strengths of the OSP Surface Finished FR-4 Components Assembled with Sn58%Bi Composite Solder Joints (OSP 표면처리된 FR-4 PCB기판과 Sn58%Bi 복합솔더 접합부의 미세조직 및 접합강도에 미치는 Sn-MWCNT의 영향)

  • Park, Hyun-Joon;Lee, Choong-Jae;Min, Kyung Deuk;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.163-169
    • /
    • 2019
  • Sn-Pb solder alloys in electronics rapidly has been replaced to Pb free solder alloys because of various environmental regulations such as restriction of hazardous substances directive (RoHS), European Union waste electrical, waste electrical and electronic equipment (WEEE), registration evaluation authorization and of chemicals (REACH) etc. Because Sn58%Bi (in wt.%) solder alloy has low melting point and higher mechanical properties than that of Sn-Pb solder, it has been studied to manufacture electronic components. However, the reliability of Sn58%Bi solder could be lowered because of the brittleness of Bi element included in the solder alloy. Therefore, we observed the microstructures of Sn58%Bi composite solders with various contents of Sn-decorated multiwalled carbon nanotube (Sn-MWCNT) particles and evaluated bonding strength of the FR-4 components assembled with Sn58%Bi composite solder. Also, microstructures and bonding strengths of the Sn58%Bi composite solder joints were evaluated with the number of reflows from 1 to 7 times, respectively. Bonding strengths and fracture energies of the Sn58%Bi composite solder joints were measured by die shear test. Microstructures and fracture modes were observed with scanning electron microscope (SEM). Microstructures in the Sn58%Bi composite solder joints were finer than that of only Sn58%Bi solder joint. Bonding strength and fracture energy of Sn58%Bi composite solder including 0.1 wt.% of Sn-decorated MWCNT particles increased up to 20.4% and 15.4% at 5 times in reflow, respectively.

Field Application of an Eco-Friendly Solidification Material for Forest Road Pavement (친환경 고화재를 이용한 임도포장의 현장 적용성 연구)

  • Lee, Kwan-Hee;Ko, Chi-Ung;Kim, Dong-Hyun;Oh, Se-Wook;Kim, Dong-Geun
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.1
    • /
    • pp.70-76
    • /
    • 2017
  • Among the forest road pavement methods, the majority of current constructions utilize concrete pavements but it has disadvantages as follows: many cracked concrete pavements generated by the erosion of underlying soil layers, could not be used as forest roads in steep slope during winter, and cement contains hazardous chemicals (hexavalent chromium, etc.). In order to supplement the limitations of the use of concrete pavement, this study was conducted to investigate the operation process and cost, the strength and compaction of the experimental forest road pavement(85 m) utilizing eco-friendly solidification material at Goryeong-gun, Gyeongsangbuk-do. The work elements of experimental forest road paving were classified into: preparation, Roadbed excavation, Roadbed grading, subgrade compaction, form work, collection and selection of site soil, mixing site soil and eco-friendly solidification material, paving by eco-friendly solidification material, compaction by vibrating roller and curing. The result of economic analysis using construction cost shows that for concrete costs total to $38,681won/m^3$ while for the eco-friendly paving material it is $38,245won/m^3$. Thus the construction costs for concrete and the eco-friendly paving material are similar. And the results of the Schmidt Hammer test for strength analysis by curing period are 10.5-13.5 MPa for 7 days, 18.1-22.7 MPa for 14 days, and 20.8-23.0 MPa for 28 days.

Trace Element Analysis and Source Assessment of Parking Lot Dust in Large Shopping Mall (대형유통업소주차장의 축적먼지 중 미량원소성분 분석과 오염원 평가)

  • Song, Hee-Bong;Ahn, Jeong-Eem;Jung, Yeoun-Wook;Yoon, Ho-Suk;Keum, Jong-Lok;Do, Hwa-Seok;Kim, Sun-Suk;Kim, Jong-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.3
    • /
    • pp.168-176
    • /
    • 2012
  • A total of 48 dust samples were collected from large shopping mall parking lots in Daegu metropolitan city in March 2011. Samples were sieved through a 100 ${\mu}m$ mesh and the concentration of 14 elements have been determined using by ICP after acid extraction. Results showed that Ca, Fe, K, Mg, Mn, Na and V were affected by natural sources while Cd, Cr, Cu, Ni, Pb and Zn were affected by anthropogenic sources. The measured values were remarkably higher in components from natural sources than in components from anthropogenic sources. Anthropogenic trace element concentrations of ground roof dust were higher than those of ground and underground indoor dust. A large percentage of trace elements came from natural sources rather than anthropogenic sources. The percentage composition of chemicals of ground roof dust were higher than those of ground and underground indoor dust. This study showed that investigated parking lots were rarely contaminated with hazardous heavy metals. The heavy metal pollution of ground roof were higher than those of ground and underground indoors. The correlation analysis among trace elements suggest that components in ground roof were more highly correlated than those in ground and underground indoor. Also anthropogenic trace element levels were well correlated with parking lot age and parking density.

Exposure Characteristics of Construction Painters to Organic Solvents

  • Park, Hyunhee;Park, Hae Dong;Jang, Jae-Kil
    • Safety and Health at Work
    • /
    • v.7 no.1
    • /
    • pp.63-71
    • /
    • 2016
  • Background: Construction painters have not been studied well in terms of their hazards exposure. The objective of this study was to evaluate the exposure levels of total volatile organic compounds (TVOCs) for painters in the construction industry. Methods: Activity-specific personal air samplings were carried out in three waterproofing activities [polyurethane (PU), asphalt, and cement mortar] and three painting activities (epoxy, oil based, and water based) by using organic-vapor-monitor passive-sampling devices. Gas chromatograph with flame ionization detector could be used for identifying and quantifying individual organic chemicals. The levels of TVOCs, by summing up 15 targeted substances, were expressed in exposure-index (EI) values. Results: As arithmetic means in the order of concentration levels, the EIs of TVOCs in waterproofing works were 10.77, 2.42, 1.78, 1.68, 0.47, 0.07, and none detected (ND) for indoor PU-primer task, outdoor PU-primer task, outdoor PU-resin task, indoor PU-resin task, asphalt-primer task, asphalt-adhesive task, and cement-mortar task, respectively. The highest EI for painting works was 5.61 for indoor epoxyprimer task, followed by indoor epoxy-resin task (2.03), outdoor oil-based-spray-paint task (1.65), outdoor water-based-paint task (0.66), and indoor oil-based-paint task (0.15). Assuming that the operations were carried out continuously for 8 hours without breaks and by using the arithmetic means of EIs for each of the 12 tasks in this study, 58.3% (7 out of 12) exceeded the exposure limit of 100% (EI > 1.0), while 8.3% (1 out of 12) was in 50e100% of exposure limit (0.5 > EI > 1.0), and 4 tasks out of 12 were located in less than 50% of the limit range (EI < 0.5). Conclusion: From this study, we recognized that construction painters are exposed to various solvents, including carcinogens and reproductive toxins, and the levels of TVOC concentration in many of the painting tasks exceeded the exposure limits. Construction workers need to be protected from chemical agents during their painting works by using personal protective devices and/or work practice measures. Additional studies should focus on the exposure assessment of other hazards for construction workers, in order to identify high-risk tasks and to improve hazardous work environments.

Seismic Fragility Assessment of Liquid Storage Tanks by Finite Element Reliability Analysis (유한요소 신뢰성 해석을 통한 액체저장탱크의 지진 취약도 평가)

  • Lee, Sangmok;Lee, Young-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.718-725
    • /
    • 2017
  • A liquid storage tank is one of the most important structures in industrial complexes dealing with chemicals, and its structural damage due to an earthquake may cause a disastrous event such as the leakage of hazardous materials, fire, and explosion. It is thus essential to assess the seismic fragility of liquid storage tanks and prepare for seismic events in advance. When a liquid storage tank is oscillated by a seismic load, the hydrodynamic pressure caused by the liquid-structure interaction increases the stress and causes structural damage to the tank. Meanwhile, the seismic fragility of the structure can be estimated by considering the various sources of uncertainty and calculating the failure probabilities in a given limiting state. To accurately evaluate the seismic fragility of liquid storage tanks, a sophisticated finite element analysis is required during their reliability analysis. Therefore, in this study, FERUM-ABAQUS, a recently-developed computational platform integrated with commercial finite element and reliability analysis software packages, is introduced to perform the finite element reliability analysis and calculate the failure probability of a liquid storage tank subjected to a seismic load. FERUM-ABAUS allows for automatic data exchange between these two software packages and for the efficient seismic fragility assessment of a structure. Using this computational platform, the seismic fragility curve of a liquid storage tank is successfully obtained.

Cellular Automata Simulation System for Emergency Response to the Dispersion of Accidental Chemical Releases (사고로 인한 유해화학물질 누출확산의 대응을 위한 Cellular Automata기반의 시뮬레이션 시스템)

  • Shin, Insup Paul;Kim, Chang Won;Kwak, Dongho;Yoon, En Sup;Kim, Tae-Ok
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.136-143
    • /
    • 2018
  • Cellular automata have been applied to simulations in many fields such as astrophysics, social phenomena, fire spread, and evacuation. Using cellular automata, this study develops a model for consequence analysis of the dispersion of hazardous chemicals, which is required for risk assessments of and emergency responses for frequent chemical accidents. Unlike in cases of detailed plant safety design, real-time accident responses require fast and iterative calculations to reduce the uncertainty of the distribution of damage within the affected area. EPA ALOHA and KORA of National Institute of Chemical Safety have been popular choices for these analyses. However, this study proposes an initiative to supplement the model and code continuously and is different in its development of free software, specialized for small and medium enterprises. Compared to the full-scale computational fluid dynamics (CFD), which requires large amounts of computation time, the relative accuracy loss is compromised, and the convenience of the general user is improved. Using Python open-source libraries as well as meteorological information linkage, it is made possible to expand and update the functions continuously. Users can easily obtain the results by simply inputting the layout of the plant and the materials used. Accuracy is verified against full-scale CFD simulations, and it will be distributed as open source software, supporting GPU-accelerated computing for fast computation.

Preparation and Characterization of the Multi-functionalized Mask Pack (다기능성 마스크 팩의 제조 및 특성평가)

  • Kim, Soo-Yeoun;Bae, Jun-Won;Ha, Jae-Soon;An, Hyo-Jeong;Kweon, Tae-Yeon;Choi, Seong-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.333-340
    • /
    • 2019
  • This paper was described about the preparation of the multi-functional mask pack and its evaluation. Here, the multi-functional effects means the far-infrared emissivity effect due to polyphosphoric acid, the freckles treatment effect and peeling effects due to inclusion complexes, and the skin temperature decreasing effect due to Lavender-extraction compounds. The the hazardous chemicals, viscosity, and pH were determined blow 0.01%, 280 cP, and pH=6.92 in the prepared multi-functional mask pack solution, respectively. The multi-functional mask pack prepared with dipping method in the solution were showed the value of $0.882{\mu}m$ (Far-infrared emissivity) and $3.40{\times}10^2W/m$ at $37^{\circ}C$ (Far-infrared radiation energy), respectively. After taking multi-functional mask pack, the skin moisturizing rate was indicated 35.5%, and the skin temperature was showed in the range of $24{\sim}26^{\circ}C$. The skin stimulation test for the 30 volunteer was showed very strong stability.

Performance Evaluation of a Portable GC for Real-time Monitoring of Volatile Organic Compounds (휘발성 유기화합물의 실시간 모니터링을 위한 휴대형 GC의 성능 평가)

  • You, Dong-Wook;Seon, Yeong-Sik;Oh, Jun-Sik;Yi, Bongyoon;Kim, Hyun Sik;Jung, Kwang-Woo
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.6
    • /
    • pp.327-333
    • /
    • 2020
  • Performance of a portable GC that can be utilized for the real time determination of volatile organic compounds in air was evaluated. It employs purified/compressed ambient air as the carrier gas eliminating the need for high pressure gas tanks. The compact system with dimensions of 35 × 26 × 15 ㎤ and weight of 5 kg is powered by either a 24 V DC external adapter or battery pack. Chromatograms of the mixture sample including benzene, toluene, ethylbenzene, and oxylene at concentrations of 1 ppmv and 20 ppmv represent a good reproducibility: 3.79% and 0.48% relative standard deviations (RSDs) for peak area variations; 0.40% and 0.08% RSDs for retention times. The method detection limit was 0.09 ppmv. A 30 m long, 0.28 mm I.D. column operated at an optimal condition yielded a peak capacity of 61 with good resolution for a 10 min isothermal analysis. The relative standard deviations (RSD) of the peak area variations and retention times during consecutive measurements over 27 h were less than 2.4%RSD and 0.5%RSD, respectively. Thus, this instrument makes it suitable for continuous and field analysis of low-concentration VOC mixtures in the indoor/outdoor environment as well as the spillage accident of hazardous chemicals.

Suggestion of Physicochemical Characteristics and Safety Management in the Waste Containing Nanomaterials from Engineered Nano-materials Manufacturing Plants and Waste Treatment Facilities (산업용제조시설과 폐기물처리시설에서 발생된 나노폐기물의 물리화학적 특성 및 안전관리방안 제시)

  • Kim, Woo-Il;Yeon, Jin-Mo;Cho, Na-Hyeon;Kim, Yong-Jun;Um, Nam-Il;Kim, Ki-Heon;Lee, Young-Kee
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.670-682
    • /
    • 2018
  • Engineered nanomaterials (ENMs) can be released to humans and the environment through the generation of waste containing engineered nanomaterials (WCNMs) and the use and disposal of nano-products. Nanoparticles can also be introduced intentionally or unintentionally into waste streams. This study examined WCNMs in domestic industries, and target nanomaterials, such as silicon dioxide, titanium oxide, zinc oxide, nano silver, and carbon nanotubes (CNTs), were selected. We tested 48 samples, such as dust, sludge, ash, and by-products from manufacturing facilities and waste treatment facilities. We analyzed leaching and content concentrations for heavy metals and hazardous constituents of the waste. Chemical compositions were also measured by XRD and XRF, and the unique properties of nano-waste were identified by using a particle size distribution analyzer and TEM. The dust and sludge generated from manufacturing facilities and the use of nanomaterials showed higher concentrations of metals such as lead, arsenic, chromium, barium, and zinc. Oiled cloths from facilities using nano silver revealed high concentrations of copper, and the leaching concentrations of copper and lead in fly ash were higher than those in bottom ash. In XRF measurements at the facilities, we detected compounds such as silicon dioxide, sulfur trioxide, calcium oxide, titanium dioxide, and zinc oxide. We found several chemicals such as calcium oxide and silicon dioxide in the bottom ash of waste incinerators.