• Title/Summary/Keyword: Hazard Quotient

Search Result 46, Processing Time 0.023 seconds

Risk Assessment for Aquatic Organisms of Pesticides Detected In Water Phase of Six Major Rivers in Korea (주요 하천수역에서 검출된 농약의 수서생물에 대한 위해성 평가)

  • Lee, Ji-Ho;Park, Byung-Jun;Kim, Jin-Kyung;Kim, Won-Il;Hong, Su-Myung;Im, Geon-Jae;Hong, Moo-Ki
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.1
    • /
    • pp.48-54
    • /
    • 2011
  • Risk assessments of pesticides detected in six major rivers during peak season were estimated for algae, Daphnia, and fish using hazard quotient (HQ) indexes. The eight pesticides (isoprothiolane, hexaconazole, diazinon, chlorpyrifos, prothiofos, alachlor, butachlor, molinate) were detected within the range of 0.027~12.871 ${\mu}g/L$. Detection frequency of isoprothiolate was estimated to be high at 67.5%, and those of the others varied from 15.0 to 37.5%, Hazard Quotients (HQ) indexes varied by freshwater organisms (algae, Daphnia, and fish). Overall, the ecological risk probability due to exposure of pesticides detected in major rivers did not reveal based on HQ indexes below 1.0. Particularly, butachlor and molinate for algae, chlorpyrifos, diazinon, prothiofos for Daphnia, and chlorpyrifos for fish acted as dominant contributors in increasing the ecological risk in six major rivers. This implied that integrated ecological risk assessment is required using various biological species, reflecting toxicity sensitivity. This study may provide the essential data in establishing the priority for pesticides management in major rivers, Korea.

Risk assessment for Soil Contamination Warning Standard and Soil Background Concentration (토양오염 우려기준과 토양 자연배경농도에 대한 위해성평가)

  • Shin, Dong;Park, Seong-Jae;Jo, Young Tae;Bong, Jae-eun;Park, Jeong-Hun
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.3
    • /
    • pp.37-49
    • /
    • 2021
  • There is domestic Soil Contamination Warning Standard (SCWS) as remediation standard concentration of contaminated soils. No risk should be observed at soil concentration less than SCWS. Therefore, SCWS was evaluated to confirm the risk assessment. Background Concentration of Soil (BGC) and target remediation concentration were also assessed. The results show that Excess Cancer Risk (ECR) of SCWS was the highest in the groundwater intake pathway (Adult: 6.27E-04, Child: 2.81E-04). Total Cancer Risk (TCR) was 7.76E-04 and 4.30E-04 for adult and child, exceeding reference value (10-6). Hazard Quotient (Non-Carcinogenic Risk, HQ) was the highest in the indoor air inhalation pathway (Adult: 3.64E+03, Child: 8.74E+02). Hazard Index (Total Non-Carcinogenic Risk, HI) exceeded reference value 1. ECR of the BGC was the highest in the groundwater intake pathway (Adult: 1.71E-04, Child: 7.67E-05). TCR was 2.12E-04 for adults and 1.17E-04 for children, exceeding the reference value (10-6). HQ was the highest in groundwater intake pathway (Adult: 4.10E-01, Child: 1.84E-01). HI was lower than reference value 1 (Adult: 4.78E-01, Child: 2.50E-01). The heavy metal affecting ECR was Arsenic (As). The remediation-concentration of As was 7.14 mg/kg which is higher than BGC (6.83 mg/kg). TCR of As should be less than reference value (10-6), but it was higher for all of SCWS, BGC and target remediation concentration. Therefore, it is suggested that risk assessment factors should be re-evaluated to fit domestic environmental settings and SCWS should be induced to satisfy the risk assessment.

Environmental Risk Assessment for Ivermectin, Praziquantel, Tamiflu and Triclosan (Ivermectin, praziquantel, tamiflu, triclosan의 환경위해성평가)

  • Ryu, Taekwon;Kim, Jungkon;Kim, Kyungtae;Lee, Jaewoo;Kim, Jieun;Cho, Jaegu;Yoon, Junheon;Lee, Jaean;Kim, Pilje;Ryu, Jisung
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.2
    • /
    • pp.196-203
    • /
    • 2018
  • Objectives: The purpose of this study was to assess environmental risk on the emerging contaminants of concern, such as ivermetin, parziquantel, tamiflu and triclosan. Furthermore, we tried to provide a more efficient management practice and a basis for future studies of risk assessment on those substances. Methods: Predicted no effect concentration (PNEC) and predicted environmental concentration (PEC) were determined through modeling and literature reviews. Environmental risk assessment was evaluated by calculating HQ (hazard quotient) by a comparison of PEC (or measured environmental concentration (MEC)) and PNEC. Results: HQ value of tamiflu calculated from MEC was 1.9E-03. For ivermectin and triclosan, the HQ values were not available because these were not detected in the aquatic environment. The toxicity of ivermectin and triclosan showed a very low value, indicating a high level of HQ. However, praziquantel can be categorized into the material that do not require management since they have less than HQ 1. Conclusion: Based on the results of the initial risk assessment, it is assumed that the ivermectin and triclosan have potential to cause direct adverse effects on the aquatic environment. To conduct an accurate environmental risk assessment, the further study on PEC estimation of such contaminants should be actively carried out.

Ecotoxicological Risk Assessment for Acetaminophen in Kyongahn River

  • Kim, Pan-Gyi
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.5 s.92
    • /
    • pp.440-445
    • /
    • 2006
  • Acetaminophen (paracetamol), generally used as a pain reducing agent, has good analgesic efficacy in toothaches and headaches, but is of little use in inflammatory and visceral pain. This study was performed to analyze the level of acetaminophen in the Kyongahn river and to investigate the ecological risks of target compounds. Sampling sites were Haesil, Soopyo, Wangsan, Kyongahn, Jiwol, Kwangdong, Paldang and they were analyzed in June and August, 2005. Acute toxicity of acetaminophen wwas evaluated for Daphnia magna. From the ecotoxicological results, environmental risk assessments were performed for acetaminophen residues in Kyongahn river to predict their potential adverse effect. Acetaminophen was detected at Kyonahn river, $0.439{\mu}g/l$). The toxic concentration of acetaminophen calculated with 48-h $LC_{50}$ values as 16.9 mg/l. These results indicated that acetaminophen had no significant ecotoxicological impact on short-term acute exposure.

Risk Assessment for Non-Cancer Effects of Volatile Organic Compounds in Children's Products (어린이용품에 함유된 휘발성유기화합물의 비발암 위해성평가)

  • Kim, Jungkon;Seo, Jung-Kwan;Kim, Taksoo;Park, Gun-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.3
    • /
    • pp.178-186
    • /
    • 2014
  • Background: This study was conducted to assess health risks in regard to exposure by children to volatile organic compounds (VOCs) in children's products. Methods: Ten VOCs were measured by head-space gas chromatography in children's products, including toys, oil pastels, sign pens, furniture, ball pools, and playmats. We estimated the average daily dose (ADD) via inhalation during the use of these children's products and calculated hazard quotient (HQ) by dividing ADD by reference dose of VOCs. Results: Among the measured VOCs, five compounds were identified in children's products: benzene, ethylbenzene, styrene, toluene, and xylene. The detection rates of VOCs in toys, ball pools, furniture, playmats, sign pens, and oil pastels were 85%, 100%, 100%, 30%, 100%, and 60%, respectively. The maximum levels of VOCs were 0.18 mg benzene/kg in toys, 5.92 mg toluene/kg in playmats, 10.37 mg ethylbenzene/kg in ball pools, 24.85 mg xylene/kg in toys, and 118.29 mg styrene/kg in ball pools. From exposure levels of VOCs in the children's products HQs were calculated within a range of $5.71{\times}10^{-10}$ to $4.77{\times}10^{-4}$. The HQ of xylene was the highest for children aged 0-6 playing on the playmats. However, the HQ via inhalation exposure to VOCs in individual products did not exceed 1.00. Conclusion: Based on the results, it was concluded that the use of these children's products do not pose health risks to children.

Inorganic As Concentration in Rice Grown Around the Abandoned Mining Areas and its Health Risk Assessment

  • Kim, Hyuck-Soo;Kang, Dae-Won;Kim, Da-In;Lee, Seul;Park, Sang-Won;Yoo, Ji-Hyock;Kim, Won-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.584-588
    • /
    • 2016
  • The current study was carried out to investigate total and inorganic arsenic (As) concentrations in 112 rice samples (husked rice and polished rice) grown around the abandoned mining areas and to estimate the potential health risk through dietary intake of rice in Korea. Mean concentrations of total As in husked rice and polished rice were 0.23 and $0.13mg\;kg^{-1}$, respectively. Also, average inorganic As concentrations in husked rice and polished rice were 0.09 and $0.05mg\;kg^{-1}$, respectively. These levels are lower than the standard guideline value ($0.2mg\;kg^{-1}$) for inorganic As in polished rice recommended by Korea Ministry of Food and Drug Safety and Codex. For health risk assessment, the average values of cancer risk probability was $5.7{\times}10^{-5}$ which was less than the acceptable cancer risk of $10^{-6}{\sim}10^{-4}$ for regulatory purpose. Also, hazard quotient values were lower than 1.0. Therefore, these results demonstrated that human exposure to inorganic As through dietary intake of rice collected from abandoned mining areas might not cause adverse health effects.

Water Quality Monitoring and Risk Assessment for Groundwater at Hoengseong, Gangwon-do Province (강원도 횡성지역의 지하수 수질 모니터링 및 인체 위해성 평가)

  • Gang, Seung-Hye;Kim, Ki-Tae
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.4
    • /
    • pp.356-365
    • /
    • 2021
  • Background: Concerns have been raised regarding the criteria of groundwater, in particular in Gwangwon-do Province where many residents drink groundwater due to the poor supply of tap water and a high nonconformity rate with water quality criteria nationwide. Objectives: Water quality monitoring and risk assessment were conducted for groundwater in Hoengseong, Gangwon-do Province. Methods: A total of 46 items required for meeting drinking water criteria were analyzed from 258 samples collected from March 2017 through August 2018 (152 sites in 2017 and 106 sites in 2018). Risk assessment was conducted for two non-carcinogens (F- and NO3-N), and one carcinogen (i.e., arsenic) based on their high nonconformity to water quality criteria. Results: Water quality analysis revealed that the total proportion of nonconformities was determined to be 27.9%. The nonconformity rate for each content item is as follows: total colony counts (1.6%), total coliform (6.2%), Escherichia coli (1.2%), F- (8.1%), arsenic (4.7%), NO3-N (8.1%), pH (1.2%), manganese (0.4%), and turbidity (5.8%). Risk assessment indicated that fluoride induced a hazard quotient greater than 1 with the 95% UCL (Upper Confidence Limit) concentration of the total 258 sites and average, median, and 95% UCL concentrations of nonconformity sites. For NO3-N, there was no human health risk. For arsenic, the excess cancer risk exceeded the acceptable cancer risk of 1×10-6 with the average and 95% UCL concentrations of total 258 sites and average, median, and 95% UCL concentrations of nonconformity sites. Conclusions: This study suggests that it is necessary to expand water quality monitoring of groundwater and conduct a more detailed risk assessment in order to establish a health care plan for the residents of Hoengseong, Gangwon-do Province.

Concentrations and Composition Profiles of Perfluoroalkyl Substances (PFASs) in Coastal Environments from Gunsan, Korea: Assessment of Exposure to PFASs through Seafood Consumption (군산연안 다매체 환경에서 과불화화합물(PFASs)의 농도분포 및 수산물 섭취를 통한 인체위해도 평가)

  • Lee, Bongmin;Yoon, Se-Ra;Choi, Minkyu;Lee, Sunggyu;Lee, Won-Chan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.5
    • /
    • pp.514-523
    • /
    • 2022
  • Concentrations of perfluoroalkyl substances (PFASs) were measured in seawater, sediment, and biota collected from Gunsan coast, Korea to investigate their occurrence, distribution, and risk of exposure to humans through seafood consumption. The total concentrations of PFASs in seawater, sediment, and biota ranged from 5.97 to 74.9 ng/L, 0.01 to 13.3 ng/g dry weight, and 0.02 to 5.73 ng/g wet weight, respectively. Predominant PFAS compounds differed across matrices, indicating that the distribution of PFASs in multiple environmental samples is governed by their carbon-chain length. The concentrations of PFASs in seawater were significantly negatively correlated with salinity (P<0.01), suggesting terrestrial input (including land-used PFASs) as the major source of PFAS contamination in coastal environments. The estimated daily intakes (EDIs) of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) through seafood consumption were 0.05 and 0.06 ng/kg body weight/day, respectively. The EDIs of PFOA and PFOS measured in this study were lower those the proposed by the United States Environmental Protection Agency and Canada guidelines, indicating limited health risk for Korean population from PFASs through consumption of seafood from Gunsan coastal environment.

Arsenic Contamination of Polished Rice Produced in Abandoned Mine Areas and Its Potential Human Risk Assessment using Probabilistic Techniques (폐광지역에서 생산된 백미 중 비소오염도와 확률론적 기법을 이용한 인체 위해성 평가)

  • Lee, Ji-Ho;Kim, Won-Il;Jeong, Eun-Jung;Yoo, Ji-Hyock;Kim, Ji-Young;Paik, Min-Kyung;Park, Byung-Jun;Im, Geon-Jae;Hong, Moo-Ki
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.1
    • /
    • pp.43-51
    • /
    • 2011
  • BACKGROUND: This study was conducted to investigate the arsenic (As) contaminations in polished rice cultivated nearby abandoned mine areas, and to estimate the potential health risk through dietary intake of As-enriched polished rice in each age-gender population. METHODS AND RESULTS: The As contents in polished rice grown fifteen abandoned mine areas were analyzed. The average daily intake (ADD) as well as probabilistic health risk were estimated by assuming probability distribution of exposure parameters. The average total As concentration in polished rice was $0.09{\pm}0.06$ mg/kg with a range of 0.02~0.35 mg/kg. For health risk assessment, the ADD values in all age-gender populations did not exceed the provisional tolerable daily intake (PTDI) of 2.1 ${\mu}g/kg$ b.w./day for inorganic As. Cancer risk probability (R) values were $2.45{\sim}3.28{\times}10^{-4}$ and $2.51{\sim}5.75{\times}10^{-4}$ for all age population and gender population, respectively. Particularly, the R value, $5.75{\times}10^{-4}$, for children less than six years old were estimated to be high. Hazard quotient (HQ) values were 0.23~0.31 and 0.11~0.33 for general population and age-gender population, respectively. CONCLUSION(s): The average R values assessed via intake of polished rice cultivated in abandoned mine areas exceeded the acceptable cancer risk of $10^{-6}{\sim}10^{-4}$ for regulatory purpose. Considering the HQ values smaller than 1.0, potential non-cancer toxic effects may not be caused by the long-time exposure through intake of As-contaminated polished rice.

Ecological Risk Assessment of Lead and Arsenic by Environmental Media (납과 비소에 대한 환경매체별 생태위해성평가)

  • Lee, Byeongwoo;Lee, Byoungcheun;Kim, Pilje;Yoon, Hyojung
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • Objectives: This study intends to evaluate the ecological risk of lead (Pb), arsenic (As), and their compounds according to the 2010 action plan on inventory and management for national priority chemicals and provide calculations of risks to the environment. By doing so, we aim to inform risk management measures for the target chemicals. Methods: We conducted species sensitivity distribution (SSD) analysis using the collected ecotoxicity data and obtained predicted no effect concentrations (PNECs) for the in-water environment using a hazardous concentration of 5% (HC5) protective of most species (95%) in the environment. Based on the calculated PNECs for aquatic organisms, PNEC values for soil and sediment were calculated using the partition coefficient. We also calculated predicted exposure concentration (PEC) from nation-wide environmental monitoring data and then the hazard quotient (HQ) was calculated using PNEC for environmental media. Results: Ecological toxicity data was categorized into five groups and five species for Pb and four groups and four species for As. Based on the HC5 values from SSD analysis, the PNEC value for aquatic organisms was calculated as 0.40 ㎍/L for Pb and 0.13 ㎍/L for As. PNEC values for soil and sediment calculated using a partition coefficient were 77.36 and 350.50 mg/kg for Pb and 24.20 and 112.75 mg/kg for As. The analysis of national environmental monitoring data showed that PEC values in water were 0.284 ㎍/L for Pb and 0.024 ㎍/L for As, while those in soil and sediment were respectively 45.9 and 44 mg/kg for Pb, and 11.40 and 19.80 mg/kg for As. Conclusions: HQs of Pb and As were 0.70 and 0.18 in water, while those in soil and sediment were 0.59 and 0.13 for Pb and 0.47 and 0.18 for As. With HQs <1 of lead and arsenic in the environment, their ecological risk levels are found to be low.