• Title/Summary/Keyword: Harvest Time

Search Result 1,003, Processing Time 0.042 seconds

Yield and Seed Quality Changes According to Delayed Harvest with Rainfall Treatment in Soybean (Glycine max L.) (강우처리 및 수확 지연에 따른 콩 종실 특성 및 수량성 변화)

  • Lee, Inhye;Seo, Min-Jung;Park, Myoung Ryoul;Kim, Nam-Geol;Yi, Gibum;Lee, Yu-young;Kim, Mihyang;Lee, Byong Won;Yun, Hong-Tae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.4
    • /
    • pp.353-364
    • /
    • 2020
  • Recently in Korea, soybean harvesting has been delayed due to rainfall during the harvesting season, resulting in a reduction in yield and seed quality. This study was conducted to analyze the changes in yield and seed quality during delayed harvest with rainfall treatment using different harvesting methods, including field harvesting and polyethylene film covering after cutting fully-matured soybean plants (PE covering after cutting), with two major Korean soybean cultivars (Glycine max L), Pungsannamulkong and Daewonkong. The shattering rate of Pungsannamulkong, which is higher than that of Daewonkong, increased up to 41.8% when the harvest was delayed for 40 days without rainfall treatment by harvesting with PE covering after cutting. The weight of 100 seeds tended to decrease slightly as harvesting was delayed. When Daewonkong was harvested using the PE covering after cutting method with rainfall treatment, the yield decreased to the lowest level with a 0.8 kg ha-1 daily reduction rate. Pungsannamulkong showed the lowest yield when harvested using PE covering after cutting without rainfall treatment with a 3.4 kg ha-1 daily reduction rate. The infected seed rate increased according to the harvest delay in both cultivars, and significant differences were observed according to rainfall treatment and harvesting method. The germination rate was maintained above 95% even after 40 days of delayed harvest if there was no rainfall treatment. However, with rainfall treatment, the germination rate was significantly lowered as harvesting time was delayed. In the field harvesting with rainfall treatment, the germination rate decreased to 77.2% for Daewonkong and 76.5% for Pungsannamulkong after 40 days of harvest delay. For the 100-seed weight, effects of individual treatments and interactions between treatments were not observed. In contrast, the effect of interactions between treatments on the shattering rate was significant in both cultivars, indicating that the shattering rate had the greatest impact on the yield changes during delayed harvest.

Variation of Isoflavone and Saponin During Maturity in Black Soybean (검정콩의 등숙기간 중 Isoflavone과 Saponin 함량변이)

  • Yi, Eun-Seob;Kim, Hee-Dong;Chae, Jae-Cheon;Kim, Yong-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.1
    • /
    • pp.34-41
    • /
    • 2008
  • This study was conducted to investigate antioxidant component content during maturity for judgement of optimum harvest time in black soybean. For high-functional black soybean production, accumulation pattern of isoflavone and saponin contents and anti oxidative activity according to maturity stage were investigated. Varieties used in this experiment were Ilpumgemojeongkong and heukcheongkong, which are the recommended black soybean in Korea. Isoflavone and saponin contents during maturity period in black soybean was the highest at $6{\sim}7$ days earlier than general harvesting time. It was indicated that optimum harvesting time for high quality soybean were $3{\sim}7$ days earlier than harvesting time for higher yield. As a result of investigation about accumulation pattern of antioxidant components by maturity stages in seed, total isoflavone content was the highest at 61 DAF in Ilpumgeomjeongkong and at 77 DAF in Heukcheongkong. Contents of total saponin were the highest at 61 DAF and at 71 DAF, respectively. In case of leaf, total isoflavone content was the highest at 55 DAF in Ilpumgeomjeongkong and Heukcheongkong. Contents of total saponin were the highest at 18 DAF and at $55{\sim}71$ DAF, respectively. It showed that black soybean's leaf could be developed as a new health food material, owing to high contents of antioxidant components and biological activity and it's suitable harvest time was at $R_7$.

Organic Bistable Switching Memory Devices with MeH-PPV and Graphene Oxide Composite

  • Senthilkumar, V.;Kim, Yong Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.5
    • /
    • pp.290-292
    • /
    • 2015
  • We have reported about bipolar resistive switching effect on Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]:Graphene oxide composite films, which are sandwiched between aluminum and indium tin oxide electrodes. In this case, I-V sweep curve showed a hysteretic behavior, which varied according to the polarity of the applied voltage bias. The device exhibited excellent switching characteristics, with the ON/OFF ratio being approximately two orders in magnitude. The device had good endurance (105 cycles without degradation) and long retention time (5 × 103 s) at room temperature. The bistable switching behavior varied according to the trapping and de-trapping of charges on GO sites; the carrier transport was described using the space-charge-limited current (SCLC) model.

Phytochemical Identification from Boehmeria nivea Leaves and Analysis of (-)-Loliolide by HPLC

  • Cho, Sunghun;Lee, Dong Gu;Jung, Yong-Su;Kim, Ho Bang;Cho, Eun Ju;Lee, Sanghyun
    • Natural Product Sciences
    • /
    • v.22 no.2
    • /
    • pp.134-139
    • /
    • 2016
  • Phytochemicals were isolated from leaves of the fiber crop, ramie (Boehmeria nivea, Bn), using open column chromatography and medium pressure liquid chromatography. Their structures were identified as ${\beta}$-sitosterol, (-)-loliolide, rutin, and pyrimidinedione by MS, $^1H$-, and $^{13}C$-NMR spectroscopic analysis. Among them, (-)-loliolide was isolated for the first time from B. nivea. A content analysis of (-)-loliolide in B. nivea collected from different regions and harvest times was conducted by HPLC. The highest content of (-)-loliolide was found in Bn-23 harvested in September. These results will be helpful to use the plant which harvest in September as a high content phytochemical additive in food, health supplements, and medicinal products.

Effects of Planting and Harvest Times on the Forage Yield and Quality of Spring and Summer Oats in Mountainous Areas of Southern Korea (남부산간지에서 봄과 여름 조사료 귀리의 파종과 수확 시기에 따른 조사료 품질과 생산성 변화)

  • Shin, Seonghyu;Lee, Hyunjung;Ku, Jahwan;Park, Myungryeong;Rha, Kyungyoon;Kim, Byeongju
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.2
    • /
    • pp.155-170
    • /
    • 2021
  • Oats (Avena sativa L.) represent a good forage crop for cultivation in regions with short growing periods and/or cool weather, such as the mountainous areas of southern Korea. In this study, using the Korean elite summer oat varieties 'High speed' and 'Dark horse', we aimed to determine the optimal time to plant and harvest forage oats seeded in spring and summer in a mountainous area. Seeds were planted three times from late February and early August at 9- or 10-days intervals, respectively, and plants were harvested three times from late May to October at 10-day intervals. The experiment was carried out in an upland field (Jangsu-gun Jeonbuk) in 2015 and 2016. We investigated the changes in forage yield (FY) and quality [crude protein (CP) and total digestible nutrient (TDN) contents] based on the time of planting and harvest. Neither the forage quality nor yield of either spring and summer oats was significantly influenced by the time of planting. The CP of spring oats harvested three times at 10-day intervals from late May was 12.0%, 8.2%, and 6.5%, thereby indicating a reduction with a delay in the time of harvest. In summer oats, CP ranged from 8.4% to 8.7%, although unlike CP in spring oats, was not significantly influenced by the time of harvest. For both forage types, harvest time had no significant effect on TDN. The FY of spring oats harvested in late May and early and mid-June was 10.2, 18.7, and 19.5 ton ha-1, respectively, with that of oats harvested on the latter two dates being significantly increased by 83% and 91%, respectively, compared with that in late May. Similarly, the FY of spring oats harvested in late October and early and mid-November was 7.1, 12.5, and 12.1 ton ha-1, respectively, with that of oats harvested on the latter two dates being significantly increased by 75% and 71%, respectively, compared with that in late October. Taking into consideration forage yield and quality (not less than 8% CP), it would be profitable to plant spring oats in the mountainous areas of southern Korea until March 15 and harvest around June 10, whereas summer oats could be beneficially planted until August 25 and harvested from early November.

Analysis of Amygdalin of Content Prunus mume by Variety, Harvest Time, and Fermentation Conditions (품종과 수확시기 및 발효조건에 따른 매실의 아미그달린 함량에 관한 연구)

  • Son, Seok Jun;Jeong, Young Jae;Kim, Sun Young;Choi, Ji Hae;Kim, Na Young;Lee, Hyun-Sun;Bae, Jung Min;Kim, Seon-Il;Lee, Hye-Suk;Shin, Jong Sup;Han, Jin Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.6
    • /
    • pp.721-729
    • /
    • 2017
  • This study aimed to improve customer perception of Prunus mume through analysis of amygdalin contents according to changes in variety, harvest time, and fermentation conditions. Five Prunus mume domestic cultivars were harvested at five harvest times. We compared cyanogenic glucosides in four types of fruits on the market. For amygdalin contents in seeds and flesh of Prunus mume by variety and harvest time, seeds contained higher amygdalin contents than flesh with time. As Prunus mume ripened, both amygdalin contents in seed and flesh increased. However, the rate of increase gradually decreased. For prunasin contents in Prunus mume, we determined that the dramatic increase in amygdalin from May 3 to 19 was due to amygdalin synthesis from prunasin. Moreover, in the case of fermented Prunus mume, we observed lower amygdalin content as the sugar ratio and fermentation time increased until around 90 days, followed by a decrease. Furthermore, we analyzed alteration of organic acids in Prunus mume and fermented solution based on analysis of amygdalin content in four other market fruits. Amygdalin was detected at $252.37{\pm}2.3$, $22.01{\pm}0.31$, and $8.75{\pm}0.14mg$ per 100 g in plums, peaches, and grape seeds, respectively. In flesh of plums and peaches, amygdalin contents were detected at $84.14{\pm}0.26$ and $7.54{\pm}0.06mg$ per 100 g, respectively. These results suggest scientific improvements for consumption and breeding lines.

Variations in Soil-to-Red Pepper Transfer Factors of Radionuclides with Time of Their Application and Fruit Harvest (고추 재배시 방사성 핵종 처리 및 열매수확 시기에 따른 토양-작물체간 전이계수의 변이)

  • Choi, Yong-Ho;Lee, Won-Yun;Lim, Kwang-Muk;Park, Doo-Won;Lee, Myung-Ho;Lee, Chang-Woo;Lee, Hyun-Duk;Lee, Jeong-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.3
    • /
    • pp.171-181
    • /
    • 1997
  • A mixed solution of $^{54}Mn$, $^{60}Co$, $^{85}Sr$ and $^{137}Cs$ was applied to the soil of culture boxes in a greenhouse 2 days before transplanting red pepper and at 3 different times during its growth for investigating transfer factors ($m^2/kg-dry$) for its green and red fruits. Transfer factors varied with radionuclide, application time and harvest time by factors of about $20{\sim}100$. They decreased mostly in the order of $^{85}Sr>^{54}Min>^{60}Co>^{137}Cs$ while $^{54}Mn$ and $^{60}Co$ was higher than $^{85}Sr$ when time lapse between application and harvest was short. Transfer factors of $^{85}Sr$ and $^{137}Cs$ at the last application were lower than those at the previous one by factors of $3{\sim}20$ depending on harvest time. Variations in $^{54}Mn$ and $^{60}Co$ transfer factors with application time after transplanting were comparatively low. Transfer factors of $^{54}Mn$, $^{60}Co$ and $^{85}Sr$ mixed with topsoil before transplanting were up to $3{\sim}9$ times higher than those for the application onto soil surface 2 days after transplanting while there was no difference in $^{137}Cs$. The present results can be referred to in estimating root-uptake concentrations of the radionuclides in red pepper fruit and taking proper measures for its harvest and consumption at the event of an accidental release during the growing season of red pepper.

  • PDF