• Title/Summary/Keyword: Harsh environments

Search Result 229, Processing Time 0.03 seconds

Proteomic analysis of heat-stable proteins in Escherichia coli

  • Kwon, Soon-Bok;Jung, Yun-A;Lim, Dong-Bin
    • BMB Reports
    • /
    • v.41 no.2
    • /
    • pp.108-111
    • /
    • 2008
  • Some proteins of E. coli are stable at temperatures significantly higher than $49^{\circ}C$, the maximum temperature at which the organism can grow. The heat stability of such proteins would be a property which is inherent to their structures, or it might be acquired by evolution for their specialized functions. In this study, we describe the identification of 17 heat-stable proteins from E. coli. Approximately one-third of these proteins were recognized as having functions in the protection of other proteins against denaturation. These included chaperonin (GroEL and GroES), molecular chaperones (DnaK and FkpA) and peptidyl prolyl isomerases (trigger factor and FkpA). Another common feature was that five of these proteins (GroEL, GroES, Ahpc, RibH and ferritin) have been shown to form a macromolecular structure. These results indicated that the heat stability of certain proteins may have evolved for their specialized functions, allowing them to cope with harsh environments, including high temperatures.

A Study on Diagnosis and Prognosis for Machining Center Main Spindle Unit (머시닝센터 주축 고장예측에 관한 연구)

  • Lee, Tae-Hong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.134-140
    • /
    • 2016
  • Main Spindle System has effect on performance of machine tools and working quality as well as is required of high reliability. Especially, it takes great importance in producing automobiles which includes a large number of working processes. However, main spindle unit in Machine tools are often cases where damage occurs do not meet the design life due to driving in harsh environments. This is when excessive maintenance and repair of machine tools or for damage stability has resulted in huge economic losses. Therefore, this studying propose a method of accelerated life test for diagnosing and prognosis the state of life assessment main spindle system. Time status monitoring of diagnostic data - through the analysis of the frequency band signals were carried out inside the main spindle bearing condition monitoring and fault diagnosis.

Sensorless speed control of Permanent Magnet Synchronous Motor by an Improved Sliding Mode Observer (개선된 슬라이딩 모드 관측기에 의한 영구자석 동기전동기의 센서리스 제어)

  • Ryu Sung-Lay;Kim Ji-Hyun;Lee In-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.485-487
    • /
    • 2006
  • Speed and torque controls of permanent magnet synchronous motors are usually attained by the application of position and speed sensors. However, speed and position sensors require the additional mounting space, reduce the reliability in harsh environments and increase the cost of a motor. Therefore, many studies have been performed for the elimination of speed and position sensors. This paper investigates an Improved sliding mode observer for the speed sensorless control of a permanent magnet synchronous motor. The proposed control strategy is the sliding mode observer with a variable boundary layer for a low-chattering and fast-reponse control. The proposed algorithm is verified through the simulation and experimentation.

  • PDF

Sensorless Speed Control of Induction Motor by an Improved Sliding Mode Observer (개선된 슬라이딩 모드 관측기에 의한 유도전동기의 센서리스 속도제어)

  • Jang, Min-Young;Kim, Sang-Kyoon;Kwon, Young-Ahn
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1552-1554
    • /
    • 2008
  • Recently, sensorless induction motor drives have been much studied due to several advantages. Sensorless drives eliminate the additional mounting space, increase the reliability in harsh environments, and reduce the cost of a motor. This paper investigates an improved sliding mode observer for the sensorless speed control of an induction motor. The proposed control strategy is the sliding mode observer with a variable boundary layer for a low-chattering and fast-response control. The proposed sensorless-algorithm is verified through the simulation and experimentation.

Direct Bonding of 3C-SiC Wafer for MEMS in Hash Environments (극한 환경 MEMS용 3C-SiC기판의 직접접합)

  • Chung, Yun-Sik;Lee, Jong-Chun;Chung, Gwiy-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.2020-2022
    • /
    • 2002
  • SiC direct bonding technology is very attractive for both SiCOI(SiC-on-insulator) electric devices and SiC-MEMS fileds because of its application possibility in harsh environements. This paper presents on pre-bonding according to HF pre-treatment conditions in SiC wafer direct bonding using PECVD oxide. The PECVD oxide was characterized by XPS and AFM, respectively. The characteristics of bonded sample were measured under different bonding conditions of HF concentration and applied pressure, respectively. The bonding strength was evaluated by tensile strength method. Components existed in the interlayer were analyzed by using FT-IR. The bond strength depends on the HF pre-treatment condition before pre-bonding (Min : 5.3 kgf/$cm^2{\sim}$ Max : 15.5 kgf/$cm^2$).

  • PDF

Design of hybrid-type fuzzy controller for stabilizing molten steel level in high speed continuous casting (연주 탕면레벨 안정화를 위한 하이브리드형 퍼지제어기 설계)

  • 이덕만;권영섭;이상호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.67-67
    • /
    • 2000
  • In this paper, a hybrid type fuzzy controller is proposed to maintain molten steel level stable and reliable manner in high speed continuous casting regardless of various disturbances such as casting speed change, tundish weight variation, 치ogging/undoning of SEN(Submerged Entry Nozzle), periodic bulgings, etc. To accomplish this purpose, hardware filter and software filer are carefully designed to eliminate high frequency noise and to smooth input signals from harsh environments. In order to minimize the molten steel level variations from various disturbances the controller uses hybrid type control term: fuzzy logic term, proportional term, differential term and nonlinear feedback compensation tenn. The proposed controller is applied tn commercial mini-mill plant and shows considerable improvement in minimizing the molten steel variation.

  • PDF

The Interaction of Human Enteric Pathogens with Plants

  • Lim, Jeong-A;Lee, Dong Hwan;Heu, Sunggi
    • The Plant Pathology Journal
    • /
    • v.30 no.2
    • /
    • pp.109-116
    • /
    • 2014
  • There are an increasing number of outbreaks of human pathogens related to fresh produce. Thus, the growth of human pathogens on plants should be explored. Human pathogens can survive under the harsh environments in plants, and can adhere and actively invade plants. Plant-associated microbiota or insects contribute to the survival and transmission of enteric pathogens in plants. Human enteric pathogens also trigger plant innate immunity, but some pathogens-such as Salmonella-can overcome this defense mechanism.

Emission Control of Fine Dust from Gas-Solid Cyclone (PoC 부착 싸이클론의 미세분진 유출 제어에 관한 연구)

  • 조영민
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.2
    • /
    • pp.201-210
    • /
    • 1999
  • Cyclones have been extensively used in the industry for removing fine particles from the gaseous streams, based on simplicity in design and construction in association with low cost and flexibility to operate in extreme and harsh environments. However, industrial cyclones are typically not very efficient for particles smaller than 10μm. In this work, in order to improve the separation efficiency of reverse flow cyclones, a simple device named Post Cyclone(Poc) in installed on the top of an existing cyclone. Thereby the residual swirl present at the outlet (vortex finder) of a conventional cyclone has been used to capture the escaped dust from the cyclone in the PoC. The performance of PoC was closely evaluated by changing configuration of the PoC and operation condition. In addition, the dust behaviour in th PoC was investigated based on the hypothesis of residual vortex.

  • PDF

MRAS Based Sensorless Speed Control of Permanent Magnet Synchronous Motor (MRAS에 의한 영구자석 동기전동기의 센서리스 속도제어)

  • 김영삼;권영안
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.11
    • /
    • pp.541-547
    • /
    • 2003
  • Speed and torque controls of permanent magnet synchronous motors are usually attained by the application of position and speed sensors. However, speed and position sensors require the additional mounting space, reduce the reliability in harsh environments and increase the cost of a motor. Therefore, many studies have been peformed for the elimination of speed and position sensors. This paper investigates a novel speed sensorless control of a permanent magnet synchronous motor. The proposed control strategy is based on the MRAS(Model Reference Adaptive System) using the state observer model with the current error feedback and the magnet flux model as two models for the back-emf estimation. The proposed algorithm is verified through the simulation and experiment.

Development of an Infrared Two-color Probe for Particle Cloud Temperature Measurement

  • Alshaikh Mohammed, Mohammed Ali;Kim, Ki Seong
    • Journal of ILASS-Korea
    • /
    • v.20 no.4
    • /
    • pp.230-235
    • /
    • 2015
  • The demands for reliable particle cloud temperature measurement exist in many process industries and scientific researches. Particle cloud temperature measurements depend on radiation thermometry at two or more color bands. In this study, we developed a sensitive, fast response and compact online infrared two-color probe to measure the temperature of a particle cloud in a phase of two field flow (solid-gas). The probe employs a detector contained two InGaAs photodiodes with different spectral responses in the same optical path, which allowed a compact probe design. The probe was designed to suit temperature measurements in harsh environments with the advantage of durability. The developed two-color probe is capable of detecting particle cloud temperature as low as $300^{\circ}C$, under dynamic conditions.