Browse > Article
http://dx.doi.org/10.5423/PPJ.RW.04.2014.0036

The Interaction of Human Enteric Pathogens with Plants  

Lim, Jeong-A (Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration)
Lee, Dong Hwan (Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration)
Heu, Sunggi (Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration)
Publication Information
The Plant Pathology Journal / v.30, no.2, 2014 , pp. 109-116 More about this Journal
Abstract
There are an increasing number of outbreaks of human pathogens related to fresh produce. Thus, the growth of human pathogens on plants should be explored. Human pathogens can survive under the harsh environments in plants, and can adhere and actively invade plants. Plant-associated microbiota or insects contribute to the survival and transmission of enteric pathogens in plants. Human enteric pathogens also trigger plant innate immunity, but some pathogens-such as Salmonella-can overcome this defense mechanism.
Keywords
defense; human enteric pathogens; plant innate immunity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Jeter, C. and Matthysse, A. G. 2005. Characterization of the binding of diarrheagenic strains of E. coli to plant surfaces and the role of curli in the interaction of the bacteria with alfalfa sprouts. Mol. Plant Microbe Interact. 18:1235-1242.   DOI   ScienceOn
2 Klerks, M. M., van Gent-Pelzer, M., Franz, E., Zijlstra, C. and van Bruggen, A. H. 2007. Physiological and molecular responses of Lactuca sativa to colonization by Salmonella enterica serovar Dublin. Appl. Environ. Microbiol. 73:4905-4914.   DOI   ScienceOn
3 Kroupitski, Y., Golberg, D., Belausov, E., Pinto, R., Swartzberg, D., Granot, D. and Sela, S. 2009. Internalization of Salmonella enterica in leaves is induced by light and involves chemotaxis and penetration through open stomata. Appl. Environ. Microbiol. 75:6076-6086.   DOI   ScienceOn
4 Kwan, G., Charkowski, A. O. and Barak, J. D. 2013. Salmonella enterica suppresses Pectobacterium carotovorum subsp. carotovorum population and soft rot progression by acidifying the microaerophilic environment. MBio 4:e00557-00512.
5 Lapidot, A., Romling, U. and Yaron, S. 2006. Biofilm formation and the survival of Salmonella Typhimurium on parsley. Int. J. Food Microbiol. 109:229-233.   DOI   ScienceOn
6 Lapidot, A. and Yaron, S. 2009. Transfer of Salmonella enterica serovar Typhimurium from contaminated irrigation water to parsley is dependent on curli and cellulose, the biofilm matrix components. J. Food Prot. 72:618-623.   DOI
7 Schikora, A., Carreri, A., Charpentier, E. and Hirt, H. 2008. The dark side of the salad: Salmonella typhimurium overcomes the innate immune response of Arabidopsis thaliana and shows an endopathogenic lifestyle. PLoS ONE 3:e2279.   DOI   ScienceOn
8 Roy, D., Panchal, S., Rosa, B. A. and Melotto, M. 2013. Escherichia coli O157: H7 induces stronger plant immunity than Salmonella enterica Typhimurium SL1344. Phytopathology 103:326-332.   DOI
9 Saggers, E. J., Waspe, C. R., Parker, M. L., Waldron, K. W. and Brocklehurst, T. F. 2008. Salmonella must be viable in order to attach to the surface of prepared vegetable tissues. J. Appl. Microbiol. 105:1239-1245.   DOI   ScienceOn
10 Schikora, A., Garcia, A. V. and Hirt, H. 2012. Plants as alternative hosts for Salmonella. Trends Plant Sci. 17:245-249.   DOI   ScienceOn
11 Semenov, A. M., Kuprianov, A. A. and Van Bruggen, A. H. 2010. Transfer of enteric pathogens to successive habitats as part of microbial cycles. Microb. Ecol. 60:239-249.   DOI   ScienceOn
12 Seo, S. and Matthews, K. R. 2012. Influence of the plant defense response to Escherichia coli O157:H7 cell surface structures on survival of that enteric pathogen on plant surfaces. Appl. Environ. Microbiol. 78:5882-5889.   DOI
13 Pollard, S., Barak, J., Boyer, R., Reiter, M., Gu, G. and Rideout, S. 2014. Potential Interactions between Salmonella enterica and Ralstonia solanacearum in Tomato Plants. J. Food Prot. 77:320-324.   DOI   ScienceOn
14 Wells, J. and Butterfield, J. 1999. Incidence of Salmonella on fresh fruits and vegetables affected by fungal rots or physical injury. Plant Dis. 83:722-726.   DOI
15 Williams, A., Avery, L., Killham, K. and Jones, D. 2007. Survival of Escherichia coli O157: H7 in the rhizosphere of maize grown in waste-amended soil. J. Appl. Microbiol. 102:319-326.
16 Prigent-Combaret, C., Brombacher, E., Vidal, O., Ambert, A., Lejeune, P., Landini, P. and Dorel, C. 2001. Complex regulatory network controls initial adhesion and biofilm formation in Escherichia coli via regulation of the csgD gene. J. Bacteriol. 183:7213-7223.   DOI   ScienceOn
17 Zeng, W., Melotto, M. and He, S. Y. 2010. Plant stomata: a checkpoint of host immunity and pathogen virulence. Curr. Opin. Biotechnol. 21:599-603.   DOI   ScienceOn
18 Potnis, N., Soto-Arias, J. P., Cowles, K. N., van Bruggen, A. H., Jones, J. B. and Barak, J. D. 2014. Xanthomonas perforans colonization influences Salmonella enterica in the tomato phyllosphere. Appl. Environ. Microbiol. 80:3173-3180.   DOI   ScienceOn
19 Poza-Carrion, C., Suslow, T. and Lindow, S. 2013. Resident bacteria on leaves enhance survival of immigrant cells of Salmonella enterica. Phytopathology 103:341-351.   DOI   ScienceOn
20 Raina, S., Missiakas, D., Baird, L., Kumar, S. and Georgopoulos, C. 1993. Identification and transcriptional analysis of the Escherichia coli htrE operon which is homologous to pap and related pilin operons. J. Bacteriol. 175:5009-5021.   DOI
21 Romling, U., Sierralta, W. D., Eriksson, K. and Normark, S. 1998. Multicellular and aggregative behaviour of Salmonella typhimurium strains is controlled by mutations in the agfD promoter. Mol. Microbiol. 28:249-264.   DOI   ScienceOn
22 Stenstrom, T. A. 1989. Bacterial hydrophobicity, an overall parameter for the measurement of adhesion potential to soil particles. Appl. Environ. Microbiol. 55:142-147.
23 Barak, J. D., Jahn, C. E., Gibson, D. L. and Charkowski, A. O. 2007. The role of cellulose and O-antigen capsule in the colonization of plants by Salmonella enterica. Mol. Plant Microbe Interact. 20:1083-1091.   DOI   ScienceOn
24 Franz, E., Visser, A. A., Van Diepeningen, A. D., Klerks, M. M., Termorshuizen, A. J. and van Bruggen, A. H. 2007. Quantification of contamination of lettuce by GFP-expressing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium. Food Microbiol. 24:106-112.   DOI   ScienceOn
25 Gagliardi, J. V. and Karns, J. S. 2002. Persistence of Escherichia coli O157: H7 in soil and on plant roots. Environ. Microbiol. 4:89-96.   DOI   ScienceOn
26 Barak, J. D., Gorski, L., Naraghi-Arani, P. and Charkowski, A. O. 2005. Salmonella enterica virulence genes are required for bacterial attachment to plant tissue. Appl. Environ. Microbiol. 71:5685-5691.   DOI   ScienceOn
27 Iniguez, A. L., Dong, Y., Carter, H. D., Ahmer, B. M., Stone, J. M. and Triplett, E. W. 2005. Regulation of enteric endophytic bacterial colonization by plant defenses. Mol. Plant Microbe Interact. 18:169-178.   DOI   ScienceOn
28 Shirron, N. and Yaron, S. 2011. Active suppression of early immune response in tobacco by the human pathogen Salmonella Typhimurium. PLoS ONE 6:e18855.   DOI   ScienceOn
29 Solomon, E. B., Pang, H.-J. and Matthews, K. R. 2003. Persistence of Escherichia coli O157: H7 on lettuce plants following spray irrigation with contaminated water. J. Food Prot. 66:2198.   DOI
30 Barak, J. D. and Liang, A. S. 2008. Role of soil, crop debris, and a plant pathogen in Salmonella enterica contamination of tomato plants. PLoS ONE 3:e1657.   DOI   ScienceOn
31 Cooley, M. B., Miller, W. G. and Mandrell, R. E. 2003. Colonization of Arabidopsis thaliana with Salmonella enterica and enterohemorrhagic Escherichia coli O157:H7 and competition by Enterobacter asburiae. Appl. Environ. Microbiol. 69:4915-4926.   DOI
32 Brandl, M. 2008. Plant lesions promote the rapid multiplication of Escherichia coli O157: H7 on postharvest lettuce. Appl. Environ. Microbiol. 74:5285-5289.   DOI   ScienceOn
33 Brandl, M. T. and Mandrell, R. E. 2002. Fitness of Salmonella enterica serovar Thompson in the cilantro phyllosphere. Appl. Environ. Microbiol. 68:3614-3621.   DOI   ScienceOn
34 Chinchilla, D., Bauer, Z., Regenass, M., Boller, T. and Felix, G. 2006. The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18:465-476.   DOI   ScienceOn
35 Cools, D., Merckx, R., Vlassak, K. and Verhaegen, J. 2001. Survival of E. coli and Enterococcus spp. derived from pig slurry in soils of different texture. Appl. Soil Ecol. 17:53-62.   DOI   ScienceOn
36 Erickson, M. C. 2012. Internalization of fresh produce by foodborne pathogens. Annu. Rev. Food Sci. Technol. 3:283-310.   DOI   ScienceOn
37 Thilmony, R., Underwood, W. and He, S. Y. 2006. Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157: H7. Plant J. 46:34-53.   DOI   ScienceOn
38 Soto-Arias, J. P., Groves, R. and Barak, J. D. 2013. Interaction of Phytophagous Insects with Salmonella enterica on Plants and Enhanced Persistence of the Pathogen with Macrosteles quadrilineatus Infestation or Frankliniella occidentalis Feeding. PLoS ONE 8:e79404.   DOI   ScienceOn
39 Spoel, S. H. and Dong, X. 2012. How do plants achieve immunity? Defense without specialized immune cells. Nat. Rev. Immunol. 12:89-100.   DOI   ScienceOn
40 Stine, S. W., Song, I., Choi, C. Y. and Gerba, C. P. 2005. Effect of relative humidity on preharvest survival of bacterial and viral pathogens on the surface of cantaloupe, lettuce, and bell peppers. J. Food Prot. 68:1352-1358.   DOI
41 Thomason, B. M., Dodd, D. J. and Cherry, W. B. 1977. Increased recovery of salmonellae from environmental samples enriched with buffered peptone water. Appl. Environ. Microbiol. 34:270-273.
42 Wasala, L., Talley, J. L., DeSilva, U., Fletcher, J. and Wayadande, A. 2013. Transfer of Escherichia coli O157: H7 to spinach by house flies, Musca domestica (Diptera: Muscidae). Phytopathology 103:373-380.   DOI   ScienceOn
43 Wells, J. and Butterfield, J. 1997. Salmonella contamination associated with bacterial soft rot of fresh fruits and vegetables in the marketplace. Plant Dis. 81:867-872.   DOI   ScienceOn
44 Gu, G., Hu, J., Cevallos-Cevallos, J. M., Richardson, S. M., Bartz, J. A. and van Bruggen, A. H. 2011. Internal colonization of Salmonella enterica serovar Typhimurium in tomato plants. PLoS ONE 6:e27340.   DOI
45 Nthenge, A. K., Weese, J. S., Carter, M., Wei, C. I. and Huang, T. S. 2007. Efficacy of gamma radiation and aqueous chlorine on Escherichia coli O157:H7 in hydroponically grown lettuce plants. J. Food Prot. 70:748-752.   DOI
46 Melotto, M., Underwood, W., Koczan, J., Nomura, K. and He, S. Y. 2006. Plant stomata function in innate immunity against bacterial invasion. Cell 126:969-980.   DOI   ScienceOn
47 Morris, C. E. and Monier, J.-M. 2003. The ecological significance of biofilm formation by plant-associated bacteria. Annu. Rev. Phytopathol. 41:429-453.   DOI   ScienceOn
48 Nadarasah, G. and Stavrinides, J. 2011. Insects as alternative hosts for phytopathogenic bacteria. FEMS Microbiol. Rev. 35:555-575.   DOI   ScienceOn
49 Patel, J. and Sharma, M. 2010. Differences in attachment of Salmonella enterica serovars to cabbage and lettuce leaves. Int. J. Food Microbiol. 139:41-47.   DOI   ScienceOn
50 Jones, J. D. and Dangl, J. L. 2006. The plant immune system. Nature 444:323-329.   DOI   ScienceOn
51 Islam, M., Morgan, J., Doyle, M. P., Phatak, S. C., Millner, P. and Jiang, X. 2004. Fate of Salmonella enterica serovar Typhimurium on carrots and radishes grown in fields treated with contaminated manure composts or irrigation water. Appl. Environ. Microbiol. 70:2497-2502.   DOI
52 Jacobsen, C. S. and Bech, T. B. 2012. Soil survival of Salmonella and transfer to freshwater and fresh produce. Food Res. Int. 45:557-566.   DOI   ScienceOn
53 Brandl, M. T., Haxo, A. F., Bates, A. H. and Mandrell, R. E. 2004. Comparison of survival of Campylobacter jejuni in the phyllosphere with that in the rhizosphere of spinach and radish plants. Appl. Environ. Microbiol. 70:1182-1189.   DOI   ScienceOn
54 Saldana, Z., Sanchez, E., Xicohtencatl-Cortes, J., Puente, J. L. and Giron, J. A. 2011. Surface structures involved in plant stomata and leaf colonization by shiga-toxigenic Escherichia coli O157:H7. Front. Microbiol. 2:119.
55 Solomon, E. B., Yaron, S. and Matthews, K. R. 2002. Transmission of Escherichia coli O157: H7 from contaminated manure and irrigation water to lettuce plant tissue and its subsequent internalization. Appl. Environ. Microbiol. 68:397-400.   DOI   ScienceOn
56 Felix, G., Duran, J. D., Volko, S. and Boller, T. 1999. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18:265-276.   DOI   ScienceOn
57 Natvig, E. E., Ingham, S. C., Ingham, B. H., Cooperband, L. R. and Roper, T. R. 2002. Salmonella enterica serovar Typhimurium and Escherichia coli contamination of root and leaf vegetables grown in soils with incorporated bovine manure. Appl. Environ. Microbiol. 68:2737-2744.   DOI   ScienceOn
58 Schikora, A., Virlogeux-Payant, I., Bueso, E., Garcia, A. V., Nilau, T., Charrier, A., Pelletier, S., Menanteau, P., Baccarini, M. and Velge, P. 2011. Conservation of Salmonella infection mechanisms in plants and animals. PLoS ONE 6:e24112.   DOI