DOI QR코드

DOI QR Code

The Interaction of Human Enteric Pathogens with Plants

  • Lim, Jeong-A (Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Dong Hwan (Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration) ;
  • Heu, Sunggi (Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration)
  • Received : 2014.04.15
  • Accepted : 2014.05.10
  • Published : 2014.06.01

Abstract

There are an increasing number of outbreaks of human pathogens related to fresh produce. Thus, the growth of human pathogens on plants should be explored. Human pathogens can survive under the harsh environments in plants, and can adhere and actively invade plants. Plant-associated microbiota or insects contribute to the survival and transmission of enteric pathogens in plants. Human enteric pathogens also trigger plant innate immunity, but some pathogens-such as Salmonella-can overcome this defense mechanism.

Keywords

References

  1. Barak, J. D., Gorski, L., Naraghi-Arani, P. and Charkowski, A. O. 2005. Salmonella enterica virulence genes are required for bacterial attachment to plant tissue. Appl. Environ. Microbiol. 71:5685-5691. https://doi.org/10.1128/AEM.71.10.5685-5691.2005
  2. Barak, J. D., Jahn, C. E., Gibson, D. L. and Charkowski, A. O. 2007. The role of cellulose and O-antigen capsule in the colonization of plants by Salmonella enterica. Mol. Plant Microbe Interact. 20:1083-1091. https://doi.org/10.1094/MPMI-20-9-1083
  3. Barak, J. D. and Liang, A. S. 2008. Role of soil, crop debris, and a plant pathogen in Salmonella enterica contamination of tomato plants. PLoS ONE 3:e1657. https://doi.org/10.1371/journal.pone.0001657
  4. Brandl, M. 2008. Plant lesions promote the rapid multiplication of Escherichia coli O157: H7 on postharvest lettuce. Appl. Environ. Microbiol. 74:5285-5289. https://doi.org/10.1128/AEM.01073-08
  5. Brandl, M. T., Haxo, A. F., Bates, A. H. and Mandrell, R. E. 2004. Comparison of survival of Campylobacter jejuni in the phyllosphere with that in the rhizosphere of spinach and radish plants. Appl. Environ. Microbiol. 70:1182-1189. https://doi.org/10.1128/AEM.70.2.1182-1189.2004
  6. Brandl, M. T. and Mandrell, R. E. 2002. Fitness of Salmonella enterica serovar Thompson in the cilantro phyllosphere. Appl. Environ. Microbiol. 68:3614-3621. https://doi.org/10.1128/AEM.68.7.3614-3621.2002
  7. Chinchilla, D., Bauer, Z., Regenass, M., Boller, T. and Felix, G. 2006. The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18:465-476. https://doi.org/10.1105/tpc.105.036574
  8. Cooley, M. B., Miller, W. G. and Mandrell, R. E. 2003. Colonization of Arabidopsis thaliana with Salmonella enterica and enterohemorrhagic Escherichia coli O157:H7 and competition by Enterobacter asburiae. Appl. Environ. Microbiol. 69:4915-4926. https://doi.org/10.1128/AEM.69.8.4915-4926.2003
  9. Cools, D., Merckx, R., Vlassak, K. and Verhaegen, J. 2001. Survival of E. coli and Enterococcus spp. derived from pig slurry in soils of different texture. Appl. Soil Ecol. 17:53-62. https://doi.org/10.1016/S0929-1393(00)00133-5
  10. Erickson, M. C. 2012. Internalization of fresh produce by foodborne pathogens. Annu. Rev. Food Sci. Technol. 3:283-310. https://doi.org/10.1146/annurev-food-022811-101211
  11. Felix, G., Duran, J. D., Volko, S. and Boller, T. 1999. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18:265-276. https://doi.org/10.1046/j.1365-313X.1999.00265.x
  12. Franz, E., Visser, A. A., Van Diepeningen, A. D., Klerks, M. M., Termorshuizen, A. J. and van Bruggen, A. H. 2007. Quantification of contamination of lettuce by GFP-expressing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium. Food Microbiol. 24:106-112. https://doi.org/10.1016/j.fm.2006.03.002
  13. Gagliardi, J. V. and Karns, J. S. 2002. Persistence of Escherichia coli O157: H7 in soil and on plant roots. Environ. Microbiol. 4:89-96. https://doi.org/10.1046/j.1462-2920.2002.00273.x
  14. Gu, G., Hu, J., Cevallos-Cevallos, J. M., Richardson, S. M., Bartz, J. A. and van Bruggen, A. H. 2011. Internal colonization of Salmonella enterica serovar Typhimurium in tomato plants. PLoS ONE 6:e27340. https://doi.org/10.1371/journal.pone.0027340
  15. Iniguez, A. L., Dong, Y., Carter, H. D., Ahmer, B. M., Stone, J. M. and Triplett, E. W. 2005. Regulation of enteric endophytic bacterial colonization by plant defenses. Mol. Plant Microbe Interact. 18:169-178. https://doi.org/10.1094/MPMI-18-0169
  16. Islam, M., Morgan, J., Doyle, M. P., Phatak, S. C., Millner, P. and Jiang, X. 2004. Fate of Salmonella enterica serovar Typhimurium on carrots and radishes grown in fields treated with contaminated manure composts or irrigation water. Appl. Environ. Microbiol. 70:2497-2502. https://doi.org/10.1128/AEM.70.4.2497-2502.2004
  17. Jacobsen, C. S. and Bech, T. B. 2012. Soil survival of Salmonella and transfer to freshwater and fresh produce. Food Res. Int. 45:557-566. https://doi.org/10.1016/j.foodres.2011.07.026
  18. Jeter, C. and Matthysse, A. G. 2005. Characterization of the binding of diarrheagenic strains of E. coli to plant surfaces and the role of curli in the interaction of the bacteria with alfalfa sprouts. Mol. Plant Microbe Interact. 18:1235-1242. https://doi.org/10.1094/MPMI-18-1235
  19. Jones, J. D. and Dangl, J. L. 2006. The plant immune system. Nature 444:323-329. https://doi.org/10.1038/nature05286
  20. Klerks, M. M., van Gent-Pelzer, M., Franz, E., Zijlstra, C. and van Bruggen, A. H. 2007. Physiological and molecular responses of Lactuca sativa to colonization by Salmonella enterica serovar Dublin. Appl. Environ. Microbiol. 73:4905-4914. https://doi.org/10.1128/AEM.02522-06
  21. Kroupitski, Y., Golberg, D., Belausov, E., Pinto, R., Swartzberg, D., Granot, D. and Sela, S. 2009. Internalization of Salmonella enterica in leaves is induced by light and involves chemotaxis and penetration through open stomata. Appl. Environ. Microbiol. 75:6076-6086. https://doi.org/10.1128/AEM.01084-09
  22. Kwan, G., Charkowski, A. O. and Barak, J. D. 2013. Salmonella enterica suppresses Pectobacterium carotovorum subsp. carotovorum population and soft rot progression by acidifying the microaerophilic environment. MBio 4:e00557-00512.
  23. Lapidot, A., Romling, U. and Yaron, S. 2006. Biofilm formation and the survival of Salmonella Typhimurium on parsley. Int. J. Food Microbiol. 109:229-233. https://doi.org/10.1016/j.ijfoodmicro.2006.01.012
  24. Lapidot, A. and Yaron, S. 2009. Transfer of Salmonella enterica serovar Typhimurium from contaminated irrigation water to parsley is dependent on curli and cellulose, the biofilm matrix components. J. Food Prot. 72:618-623. https://doi.org/10.4315/0362-028X-72.3.618
  25. Melotto, M., Underwood, W., Koczan, J., Nomura, K. and He, S. Y. 2006. Plant stomata function in innate immunity against bacterial invasion. Cell 126:969-980. https://doi.org/10.1016/j.cell.2006.06.054
  26. Morris, C. E. and Monier, J.-M. 2003. The ecological significance of biofilm formation by plant-associated bacteria. Annu. Rev. Phytopathol. 41:429-453. https://doi.org/10.1146/annurev.phyto.41.022103.134521
  27. Nadarasah, G. and Stavrinides, J. 2011. Insects as alternative hosts for phytopathogenic bacteria. FEMS Microbiol. Rev. 35:555-575. https://doi.org/10.1111/j.1574-6976.2011.00264.x
  28. Natvig, E. E., Ingham, S. C., Ingham, B. H., Cooperband, L. R. and Roper, T. R. 2002. Salmonella enterica serovar Typhimurium and Escherichia coli contamination of root and leaf vegetables grown in soils with incorporated bovine manure. Appl. Environ. Microbiol. 68:2737-2744. https://doi.org/10.1128/AEM.68.6.2737-2744.2002
  29. Nthenge, A. K., Weese, J. S., Carter, M., Wei, C. I. and Huang, T. S. 2007. Efficacy of gamma radiation and aqueous chlorine on Escherichia coli O157:H7 in hydroponically grown lettuce plants. J. Food Prot. 70:748-752. https://doi.org/10.4315/0362-028X-70.3.748
  30. Patel, J. and Sharma, M. 2010. Differences in attachment of Salmonella enterica serovars to cabbage and lettuce leaves. Int. J. Food Microbiol. 139:41-47. https://doi.org/10.1016/j.ijfoodmicro.2010.02.005
  31. Pollard, S., Barak, J., Boyer, R., Reiter, M., Gu, G. and Rideout, S. 2014. Potential Interactions between Salmonella enterica and Ralstonia solanacearum in Tomato Plants. J. Food Prot. 77:320-324. https://doi.org/10.4315/0362-028X.JFP-13-209
  32. Potnis, N., Soto-Arias, J. P., Cowles, K. N., van Bruggen, A. H., Jones, J. B. and Barak, J. D. 2014. Xanthomonas perforans colonization influences Salmonella enterica in the tomato phyllosphere. Appl. Environ. Microbiol. 80:3173-3180. https://doi.org/10.1128/AEM.00345-14
  33. Poza-Carrion, C., Suslow, T. and Lindow, S. 2013. Resident bacteria on leaves enhance survival of immigrant cells of Salmonella enterica. Phytopathology 103:341-351. https://doi.org/10.1094/PHYTO-09-12-0221-FI
  34. Prigent-Combaret, C., Brombacher, E., Vidal, O., Ambert, A., Lejeune, P., Landini, P. and Dorel, C. 2001. Complex regulatory network controls initial adhesion and biofilm formation in Escherichia coli via regulation of the csgD gene. J. Bacteriol. 183:7213-7223. https://doi.org/10.1128/JB.183.24.7213-7223.2001
  35. Raina, S., Missiakas, D., Baird, L., Kumar, S. and Georgopoulos, C. 1993. Identification and transcriptional analysis of the Escherichia coli htrE operon which is homologous to pap and related pilin operons. J. Bacteriol. 175:5009-5021. https://doi.org/10.1128/jb.175.16.5009-5021.1993
  36. Romling, U., Sierralta, W. D., Eriksson, K. and Normark, S. 1998. Multicellular and aggregative behaviour of Salmonella typhimurium strains is controlled by mutations in the agfD promoter. Mol. Microbiol. 28:249-264. https://doi.org/10.1046/j.1365-2958.1998.00791.x
  37. Roy, D., Panchal, S., Rosa, B. A. and Melotto, M. 2013. Escherichia coli O157: H7 induces stronger plant immunity than Salmonella enterica Typhimurium SL1344. Phytopathology 103:326-332. https://doi.org/10.1094/PHYTO-09-12-0230-FI
  38. Saggers, E. J., Waspe, C. R., Parker, M. L., Waldron, K. W. and Brocklehurst, T. F. 2008. Salmonella must be viable in order to attach to the surface of prepared vegetable tissues. J. Appl. Microbiol. 105:1239-1245. https://doi.org/10.1111/j.1365-2672.2008.03795.x
  39. Saldana, Z., Sanchez, E., Xicohtencatl-Cortes, J., Puente, J. L. and Giron, J. A. 2011. Surface structures involved in plant stomata and leaf colonization by shiga-toxigenic Escherichia coli O157:H7. Front. Microbiol. 2:119.
  40. Schikora, A., Carreri, A., Charpentier, E. and Hirt, H. 2008. The dark side of the salad: Salmonella typhimurium overcomes the innate immune response of Arabidopsis thaliana and shows an endopathogenic lifestyle. PLoS ONE 3:e2279. https://doi.org/10.1371/journal.pone.0002279
  41. Schikora, A., Garcia, A. V. and Hirt, H. 2012. Plants as alternative hosts for Salmonella. Trends Plant Sci. 17:245-249. https://doi.org/10.1016/j.tplants.2012.03.007
  42. Schikora, A., Virlogeux-Payant, I., Bueso, E., Garcia, A. V., Nilau, T., Charrier, A., Pelletier, S., Menanteau, P., Baccarini, M. and Velge, P. 2011. Conservation of Salmonella infection mechanisms in plants and animals. PLoS ONE 6:e24112. https://doi.org/10.1371/journal.pone.0024112
  43. Semenov, A. M., Kuprianov, A. A. and Van Bruggen, A. H. 2010. Transfer of enteric pathogens to successive habitats as part of microbial cycles. Microb. Ecol. 60:239-249. https://doi.org/10.1007/s00248-010-9663-0
  44. Seo, S. and Matthews, K. R. 2012. Influence of the plant defense response to Escherichia coli O157:H7 cell surface structures on survival of that enteric pathogen on plant surfaces. Appl. Environ. Microbiol. 78:5882-5889. https://doi.org/10.1128/AEM.01095-12
  45. Shirron, N. and Yaron, S. 2011. Active suppression of early immune response in tobacco by the human pathogen Salmonella Typhimurium. PLoS ONE 6:e18855. https://doi.org/10.1371/journal.pone.0018855
  46. Solomon, E. B., Pang, H.-J. and Matthews, K. R. 2003. Persistence of Escherichia coli O157: H7 on lettuce plants following spray irrigation with contaminated water. J. Food Prot. 66:2198. https://doi.org/10.4315/0362-028X-66.12.2198
  47. Solomon, E. B., Yaron, S. and Matthews, K. R. 2002. Transmission of Escherichia coli O157: H7 from contaminated manure and irrigation water to lettuce plant tissue and its subsequent internalization. Appl. Environ. Microbiol. 68:397-400. https://doi.org/10.1128/AEM.68.1.397-400.2002
  48. Soto-Arias, J. P., Groves, R. and Barak, J. D. 2013. Interaction of Phytophagous Insects with Salmonella enterica on Plants and Enhanced Persistence of the Pathogen with Macrosteles quadrilineatus Infestation or Frankliniella occidentalis Feeding. PLoS ONE 8:e79404. https://doi.org/10.1371/journal.pone.0079404
  49. Spoel, S. H. and Dong, X. 2012. How do plants achieve immunity? Defense without specialized immune cells. Nat. Rev. Immunol. 12:89-100. https://doi.org/10.1038/nri3141
  50. Stenstrom, T. A. 1989. Bacterial hydrophobicity, an overall parameter for the measurement of adhesion potential to soil particles. Appl. Environ. Microbiol. 55:142-147.
  51. Stine, S. W., Song, I., Choi, C. Y. and Gerba, C. P. 2005. Effect of relative humidity on preharvest survival of bacterial and viral pathogens on the surface of cantaloupe, lettuce, and bell peppers. J. Food Prot. 68:1352-1358. https://doi.org/10.4315/0362-028X-68.7.1352
  52. Thilmony, R., Underwood, W. and He, S. Y. 2006. Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157: H7. Plant J. 46:34-53. https://doi.org/10.1111/j.1365-313X.2006.02725.x
  53. Thomason, B. M., Dodd, D. J. and Cherry, W. B. 1977. Increased recovery of salmonellae from environmental samples enriched with buffered peptone water. Appl. Environ. Microbiol. 34:270-273.
  54. Wasala, L., Talley, J. L., DeSilva, U., Fletcher, J. and Wayadande, A. 2013. Transfer of Escherichia coli O157: H7 to spinach by house flies, Musca domestica (Diptera: Muscidae). Phytopathology 103:373-380. https://doi.org/10.1094/PHYTO-09-12-0217-FI
  55. Wells, J. and Butterfield, J. 1997. Salmonella contamination associated with bacterial soft rot of fresh fruits and vegetables in the marketplace. Plant Dis. 81:867-872. https://doi.org/10.1094/PDIS.1997.81.8.867
  56. Wells, J. and Butterfield, J. 1999. Incidence of Salmonella on fresh fruits and vegetables affected by fungal rots or physical injury. Plant Dis. 83:722-726. https://doi.org/10.1094/PDIS.1999.83.8.722
  57. Williams, A., Avery, L., Killham, K. and Jones, D. 2007. Survival of Escherichia coli O157: H7 in the rhizosphere of maize grown in waste-amended soil. J. Appl. Microbiol. 102:319-326.
  58. Zeng, W., Melotto, M. and He, S. Y. 2010. Plant stomata: a checkpoint of host immunity and pathogen virulence. Curr. Opin. Biotechnol. 21:599-603. https://doi.org/10.1016/j.copbio.2010.05.006

Cited by

  1. Against friend and foe: Type 6 effectors in plant-associated bacteria vol.53, pp.3, 2015, https://doi.org/10.1007/s12275-015-5055-y
  2. The effect of temperature on different Salmonella serotypes during warm seasons in a Mediterranean climate city, Adelaide, Australia vol.144, pp.06, 2016, https://doi.org/10.1017/S0950268815002587
  3. Prediction of bacterial associations with plants using a supervised machine-learning approach vol.18, pp.12, 2016, https://doi.org/10.1111/1462-2920.13389