• Title/Summary/Keyword: Harmonic resonance

Search Result 258, Processing Time 0.028 seconds

TAMAM RWA Micro-Vibration Test and Analysis (TAMAM 반작용휠의 미소진동 측정 및 분석)

  • 오시환;이승우;최홍택;이선호;용기력
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.836-839
    • /
    • 2003
  • In this paper, we briefly introduce the test bench and test method of RWA micro-vibration. TAMAM RWA (Reaction Wheel Assembly) micro-vibration was measured on a KISTLER dynamic plate which can measure time signals of three orthogonal forces and torques simultaneously up to 400Hz, and test data was analyzed. Measured data were evaluated with respect to the wheel spin rate and the static/dynamic unbalances were estimated from the extracted first harmonic component. The estimated static and dynamic unbalances were 0.79gㆍcm and 17.4gㆍ$\textrm{cm}^2$ respectively. The resonance mode and two rocking modes were observed as a results of its frequency analysis. Several higher order harmonic components were observed, which comes from its rotor shape as well as the wheel bearing.

  • PDF

Analysis on the Harmonic Characteristics of Nonlinear Load Operated by Unbalance Voltage (불평형 전압으로 운전하는 비선형 부하의 고조파 특성 분석)

  • 김종겸;이은웅;이동주
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.10
    • /
    • pp.491-500
    • /
    • 2003
  • Most of the loads in industrial power distribution systems are balanced and connected to three wires power systems. However, in the user power distribution systems, most of the loads are single & three phase and unbalanced, generating a large amount of non-characteristic harmonics. With the advent of power electronics and proliferation of non-linear loads in industrial power applications, power harmonics and their effects on power quality are a topic of concern. Harmonics by the unbalance voltage and non-linear loads, cause the increase of machine loss and heating. In order to allow current harmonic compensation, a filter must be installed. This paper describes the performance of passive filter under the voltage unbalance and non-linear load.

A Study on the Dynamic Stability of a Power Pack for Heavy Construction Equipments (토목공사용 파워팩의 동적 안정성에 관한 연구)

  • Kim, Dong-Il;Kim, Chae-Sil;Lee, Sang-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.134-138
    • /
    • 2014
  • Power packs can change energy to hydraulic energy generated by an engine as a tool for use with civil engineering construction equipment. This paper determines which type of power pack meets the standards of construction machinery. A power pack was formulated as a three-dimensional model by using the software CATIA. A modal analysis was conducted using ANSYS Workbench, and the resonance was checked. Next, a harmonic analysis was conducted. The analytical results show that the dynamic stability of the power pack is assured.

Optimal Design of Tool Horn for Ultrasonic Metal Welding (초음파 금속 용착을 위한 공구혼의 최적설계)

  • Jang, Ho-Su;Park, Woo-Yeol;Park, Dong-Sam
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.263-267
    • /
    • 2011
  • Ultrasonic metal welding can be used to weld different metals together safely and precisely, without solder, flux and special preparation. Ultrasonic metal welding machine consists of a power supply, a transducer, a booster and a horn. This paper designed the horn needed for Ultrasonic metal welding. The horn has to be designed and manufactured accurately, because measurements such as the shape, length, mass and etc. have effects on the resonant frequency and the vibration mode. The designed horn has the feature of 40,000Hz of nature frequency, and maximizes vibration range in the Tip by resonance in the frequency of ultrasonic wave machine. In this paper, we calculated and analyzed the natural frequency to find the optimal design of the horn that had the amplitude about $12{\mu}m$ by the modal analysis and harmonic analysis using ANSYS. And we analyzed FFT analysis of the manufactured horn.

Non-linear Phenomenon in the Response of Circle Cantilever Beam (원형 외팔보의 응답에서의 비선형 현상)

  • Kim, Myung-Gu;Lee, Heung-Shik;Cho, Chong-Du
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.129-133
    • /
    • 2004
  • This paper is the result of a experimental study about non-linear one to one modal coupling of a flexible circular cantilever beam which was transversely excited with harmonic excitation. It was proved that 2 order jumping in out of plane was caused by jump phenomenon in in-plane of flexible circular cantilever beam, because of non-linear coupling. In addition, cantilever beam showed hardening spring characteristics in in-plane and softening spring characteristics in out-of-plane.

  • PDF

Localization of Ultra-Low Frequency Waves in Multi-Ion Plasmas of the Planetary Magnetosphere

  • Kim, Eun-Hwa;Johnson, Jay R.;Lee, Dong-Hun
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.289-295
    • /
    • 2015
  • By adopting a 2D time-dependent wave code, we investigate how mode-converted waves at the Ion-Ion Hybrid (IIH) resonance and compressional waves propagate in 2D density structures with a wide range of field-aligned wavenumbers to background magnetic fields. The simulation results show that the mode-converted waves have continuous bands across the field line consistent with previous numerical studies. These waves also have harmonic structures in frequency domain and are localized in the field-aligned heavy ion density well. Our results thus emphasize the importance of a field-aligned heavy ion density structure for ultra-low frequency wave propagation, and suggest that IIH waves can be localized in different locations along the field line.

Solution Structure of Bovine Pancreatic Trypsin Inhibitor using NMR Chemical Shift Restraints

  • Park, Kyunglae;Wil
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.1 no.2
    • /
    • pp.79-94
    • /
    • 1997
  • The solution structure of bovine pancreatic trypsin inhibitor(BPTI) has been refined by NMR chemical shift data of C${\alpha}$H using classical molecular dynamics simulation. The structure dependent part of the observable chemical shift was modeled by ring current effect, magnetic anisotropy effect from the nearby groups, whereas the structure independent part was replaced with the random coil shift. A new harmonic function derived from the differences between the observed and calculated chemical shifts was added into physical force field as an pseudo potential energy term with force constant of 250 kJmol-1 ppm-2. During the 1.5 ns molecular dynamics simulation with chemical shift restraints BPTI has accessed different conformation space compared to crystal and NOE driven structure.

  • PDF

A Study on Quantitiative visualization of Vibration Mode Shape of Disk Brake by Using Stroboscopic ESPI (스트로보스코픽 전자 스페클 패턴 간섭법을 이용한 디스크 브레이크의 진동 모드의 정량적 가시화에 관한 연구)

  • 강영준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.97-104
    • /
    • 1999
  • Brake squeal noise has been a problem since the early days of motoring . It is important to obtain vibration mode shape for reduction of brake noise . Stroboscopic Electronic Speckle Pattern Interferometry is a very powerful measuring method for study of vibrating objects in static state compared with conventional methods because this method can give both resonance frequency and quantitative visualization of vibration mode shape at the same time. In this paper, we performed qualitative visualization and quantitative analysis of vibration mode shpae of disk brake by using stroboscopic ESPI and phase shifting method. The stroboscopic wavefronts are obtained by chopping continuous wave laser beam using acousto-optic modulator .Experiments were performed at the same constraint conditions as disk brake of the practical vehicle as far as possible. The experimental results of this paper show quantitative measurement of vibration mode shape and quantiative visualization of vibration amplitude of disk brake with 3D plotting.

  • PDF

Nonlinear Vibrations of Piezoelectric Microactuators in Hard Disk Drives (하드디스크 드라이브용 압전형 마이크로 액추에이터의 비선형 진동 특성)

  • Jeong, Deok-Yeong;Lee, Seung-Yeop;Kim, Cheol-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2002-2008
    • /
    • 2001
  • Nonlinear vibration characteristics of a piezoelectric-type micro actuator used for hard disk drives are experimentally studied. The nonlinear characterisitics include hysteresis, superharmonic resonance, jump phenomenon, and shifting of natural frequencies. The vibration modes and frequencies of the commercial actuator of the Hutchinson's Magnum series are measured using a laser vibrometer. From harmonic excitation to the PZT acturator, we observe interesting hysteresis patterns with 3 times input frequency. It is shown that the micro actuator has the typical 3 times superhamonic resonances coupled to the first torsional and sway modes of the suspension.

Internal Resonance and Stability Change for the Two Degree Nonlinear Coupled System (2 자유도 비선형 연성시스템에서 내부공진과 안정성 변화)

  • Kim, Myoung-Gu;Pak, Chul-Hui;Cho, Chong-Du
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.853-861
    • /
    • 2007
  • To understand the concept of dynamic motion in two degree nonlinear coupled system, free vibration not including damping and excitation is investigated with the concept of nonlinear normal mode. Stability analysis of a coupled system is conducted, and the theoretical analysis performed for the bifurcation phenomenon in the system. Bifurcation point is estimated using harmonic balance method. When the bifurcation occurs, the saddle point is always found on Poincare's map. Nonlinear phenomenon result in amplitude modulation near the saddle point and the internal resonance in the system making continuous interchange of energy. If the bifurcation in the normal mode is local, the motion remains stable for a long time even when the total energy is increased in the system. On the other hand, if the bifurcation is global, the motion in the normal mode disappears into the chaos range as the range becomes gradually large.

  • PDF