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By adopting a 2D time-dependent wave code, we investigate how mode-converted waves at the Ion-Ion Hybrid (IIH) 
resonance and compressional waves propagate in 2D density structures with a wide range of field-aligned wavenumbers to 
background magnetic fields. The simulation results show that the mode-converted waves have continuous bands across the 
field line consistent with previous numerical studies. These waves also have harmonic structures in frequency domain and 
are localized in the field-aligned heavy ion density well. Our results thus emphasize the importance of a field-aligned heavy 
ion density structure for ultra-low frequency wave propagation, and suggest that IIH waves can be localized in different 
locations along the field line.
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1. INTRODUCTION

Plasmas support a wide variety of plasma waves that 

carry information to remote observers (Lee et al. 2014; 

Hwang 2015). Ultra-Low Frequency (ULF) waves in the 

ion cyclotron range of frequency, which can interact with 

electrons and ions (Rauch & Roux 1982; Horne & Thorne 

1997; Song et al. 1999), are often observed in planetary 

magnetospheres (Russell et al. 2008; Boardsen et al. 2012) as 

well as in Earth’s magnetosphere and ionosphere (Kim et al. 

2010, 2011b). 

In the ion cyclotron frequency range, the wave dispersion 

relations can be simplified to
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where n is the wave refractive index (kc/ω), and subscripts  and || represent the 

perpendicular and parallel directions to the ambient magnetic field (B0), respectively. 𝜀𝜀𝑅𝑅,𝐿𝐿,𝑆𝑆  

are the tensor elements for multiple ions,  
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where  = 2πf is the angular frequency, pj(e) and j(e) are the plasma and cyclotron 

frequencies of jth ion (electron), respectively, and ηion = Nion/Ne is the ratio of the ion density 

(Nion) to electron density (Ne). 

For perpendicular propagation (n||  0), the dispersion relation in Eq. (1) exhibits a 

resonance (n  ) where S(bb) = 0, 

� (1)

where n is the wave refractive index (kc/ω), and subscripts 

⊥  and || represent the perpendicular and parallel directions 

to the ambient magnetic field (B
0
), respectively. εR,L,S are the 

tensor elements for multiple ions, 
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where ω = 2πf is the angular frequency, ωpj(e)
 and Ωj(e)

 are 

the plasma and cyclotron frequencies of jth ion (electron), 

respectively, and ηion = Nion/Ne is the ratio of the ion density 

(Nion) to electron density (Ne).

For perpendicular propagation (n
||
→0), the dispersion 

relation in Eq. (1) exhibits a resonance (n⊥→∞) where 

eS(ωbb) = 0,
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which is the Buchsbaum frequency (bi-ion frequency) (Buchsbaum 1960). For oblique 

propagation (n||  0), the perpendicular resonance (n  ) occurs at the location � ii(x)=�( )

where  

n||
2 � =� ii( ) =�S � =� ii( ) (5) 

Between each pair of gyrofrequencies, there is a mode conversion location that is referred to 

as the Ion-Ion Hybrid (IIH) resonance, with a corresponding frequency (ii) called the IIH 

frequency (Lee et al. 2008). When Fast compressional Waves (FWs), propagating across 

magnetic flux surfaces and satisfying the IIH resonance condition, encounter inhomogeneity 

for the heavy ion concentration and/or magnetic field strength, it may be possible for the 

wave to satisfy the resonance condition (5), where energy from incoming FWs concentrates 

at the IIH resonance location and the mode converts to field-aligned propagating IIH waves 

that satisfy the dispersion relation of n2
|| ~ S. 

The IIH resonance can exhibit significant differences because of the different conditions 

in planetary magnetospheres. For Mercury, where the magnetic field is relatively weak, the 

wavelength of field-aligned modes can be comparable to the size of the magnetosphere. 

Therefore, IIH waves oscillate globally along the magnetic field lines for Mercury, similar to 

the field line resonance on Earth (Othmer et al. 1999; Glassmeier et al. 2003, 2004; 

Klimushkin et al. 2006; Kim et al. 2008, 2011a, 2013, 2015a, b). On the other hand, on Earth, 

the magnetic field strength is larger and the wavelength is shorter, which typically localizes 

mode converted waves between the Buchsbaum cutoff locations, which occur at around 10 

degrees latitude. The modes that result from mode conversion are typically linearly polarized 

electromagnetic ion cyclotron (EMIC) waves, which can be generated via mode conversion 

� (4)

which is the Buchsbaum frequency (bi-ion frequency) 
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(Buchsbaum 1960). For oblique propagation (n
||
 ≠ 0), the 

perpendicular resonance (n⊥→∞) occurs at the location 

(ωii(x) = ω) where 

	 n
||
2(ω = ωii) = εS(ω = ωii)� (5)

Between each pair of gyrofrequencies, there is a mode 

conversion location that is referred to as the Ion-Ion 

Hybrid (IIH) resonance, with a corresponding frequency 

(ωii) called the IIH frequency (Lee et al. 2008). When Fast 

compressional Waves (FWs), propagating across magnetic 

flux surfaces and satisfying the IIH resonance condition, 

encounter inhomogeneity for the heavy ion concentration 

and/or magnetic field strength, it may be possible for the 

wave to satisfy the resonance condition (5), where energy 

from incoming FWs concentrates at the IIH resonance 

location and the mode converts to field-aligned propagating 

IIH waves that satisfy the dispersion relation of n2
||
 ~ εS.

The IIH resonance can exhibit significant differences 

b e cau s e  o f  t h e  d i f f e re nt  c o n d i t i o n s  i n  p l a n e t a r y 

magnetospheres. For Mercury, where the magnetic field 

is relatively weak, the wavelength of field-aligned modes 

can be comparable to the size of the magnetosphere. 

Therefore, IIH waves oscillate globally along the magnetic 

field lines for Mercury, similar to the field line resonance 

on Earth (Othmer et al. 1999; Glassmeier et al. 2003, 2004; 

Klimushkin et al. 2006; Kim et al. 2008, 2011a, 2013, 2015a, 

b). On the other hand, on Earth, the magnetic field strength 

is larger and the wavelength is shorter, which typically 

localizes mode converted waves between the Buchsbaum 

cutoff locations, which occur at around 10 degrees latitude. 

The modes that result from mode conversion are typically 

linearly polarized ElectroMagnetic Ion Cyclotron (EMIC) 

waves, which can be generated via mode conversion near 

the IIH resonance location (Lee et al. 2008). These waves 

have a significantly different polarization from EMIC 

waves, which are excited by proton temperature anisotropy 

(Cornwall 1965; Kennel & Petschek 1966; Williams & Lyons 

1974a, b; Taylor & Lyons 1976). Because the incoming FW 

absorption at the IIH resonance (the generation of linearly 

polarized EMIC waves) occurs at a limited wave frequency 

and heavy ion density ratio, linearly polarized waves can be 

used as a diagnostic tool to estimate the heavy ion density 

ratio (Kim et al. 2015c).

In planetary magnetospheres, as the mode-converted 

IIH waves near the magnetic equator propagate to higher 

magnetic latitudes, the waves reach cutoff (n
||
 = 0 and εS = 0) 

at ω = ωbb and parallel resonance (n
||
→∞ and εS→∞) locations 

at ω = Ωion. Because the IIH waves are partially reflected 

at the Buchsbaum resonance location where ω = ωbb, the 

waves are possibly localized near the magnetic equator 

between two Buchsbaum resonance locations (Klimushkin 

et al. 2010; Vincena et al. 2011). The localization of mode-

converted IIH waves is referred to as IIH Alfven resonance, 

and is experimentally detected in laboratory plasmas 

(Vincena et al. 2011, 2013; Farmer & Morales 2014).

Recent 2D full wave simulations of Mercury’s dipolar 

magnetosphere (Kim et al. 2015a), which assumed constant 

particle densities, clearly showed the reflection of the IIH 

resonant waves at the Buchsbaum resonance location 

and wave tunneling through the wave stopgap between 

cutoff and resonance. However, as shown in Eq. (4), the 

Buchsbaum frequency is a function of the heavy ion density 

concentration ratio as well as the ambient magnetic field 

strength. Therefore, it is useful to examine the solutions 

of IIH resonant waves in more detail to determine how 

the wave structure and absorption of energy depend on 

variations in the magnetic field strength and density. 

In this paper, we use a multi-ion fluid wave code to 

demonstrate mode conversion that occurs at the IIH 

resonance when impulsive FWs enter the plasma with a 

2D inhomogeneous density structure, which is assumed to 

result from the sputtering of material from the surface of 

Mercury. We find that mode converted IIH waves can be 

localized in the density well along the magnetic field line, 

and also exhibit harmonic frequency structure. 

2. NUMERICAL RESULTS

We employ the fluid wave simulation model developed 

by Kim & Lee (2003). Similar to previous wave simulations 

(Kim et al. 2008, 2013), we adopt the plasma conditions 

present on Mercury, and thus the background magnetic 

field (B
0
 = 86 nT) and the electron density (Ne = 3 cm-3) are 

assumed to be constant. The ambient magnetic field lies in 

the Z direction and the inhomogeneity is introduced in the 

x-z plane. We limit ourselves in that all perturbations are 

proportional to exp(ikyy), where ky is the given wavenumber 

in the y direction and, for the sake of simplicity, is assumed 

to be 0. Because the magnetopause of Mercury is located 

near 1.4 RM (Anderson et al. 2011), we assume a shorter 

radial distance of 1 RM than the magnetopause location 

in the X direction, where RM is the radius of Mercury. The 

length in the Z direction (Lz) is assumed to be 0.93 RM, which 

is similar to field line length at LM = 1.5 in dipole coordinates, 

where LM is the magnetic L-shell number for Mercury. We 

adopt a grid with dimensions Nx×Nz = 300×100, and to save 

computing time, the ratio of proton mass (mH) to electron 

mass (me) is assumed to be 100 (mH/me = 100).
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Because sodium is one of the major heavy ions on 

Mercury (Zurbuchen et al. 2011; Raines et al. 2014), we 

adopt an electron-proton-sodium plasma, similar to 

previous numerical studies (Kim et al. 2008, 2011a). We 

assume the sodium density (NNa) has a minimum value (i.e., 

sodium density well) at the center of the simulation domain, 

as shown in Fig. 1. The electron density is assumed to be 

the sum of the ion densities. Thus, the ratio of the proton 

density to electron density is η
H

 = NH/Ne = 1 – ηNa, where ηNa 

= NNa/Ne, and ηH is maximum in the middle of the simulation 

domain.

The simulation is driven by imposing an impulse in Ey 

at X = x/Lx = 1 during the interval 0 ≤ τ = t/tci ≤ 2.5, where 

tci = 2π/ΩH, as shown in Fig. 2(a) and 2(b) shows the initial 

field-aligned wave structures along Z = z/Lz at X = 1.  

Because the width of the source is closely related to the 

initial wavevector, a wide source corresponds to a more 

perpendicular propagation. The boundaries become perfect 

reflectors after the impulsive stimulus ends (τ = 2.5), and 

thus the total energy in the box model will remain constant 

in time after this interval.

We stored the time history of the electromagnetic fields 

at each grid point (X, Z) during the simulation run time  

(0 < τ < 55) and obtained the wave power spectra using a 

fast Fourier transform. To examine wave properties along 

and across the magnetic field line, we selected two points 

in X and Z, with X
0
 = 0.55 and Z

0
 = 0.7, as shown in Fig. 

1. Under the given conditions, and because the density 

inhomogeneity lies in the X and Z directions, Ex represents 

the mixture of the IIH resonant wave and FW modes, while 

Ey shows the pure FW mode.

Figs. 3(a) and 3(b) show the time history of the transverse 

component of B
0
 of the electric fields (Ex and Ey) along X at 

Z = Z
0
. In this figure, the FWs launched at X = 1 propagate 

toward the Na+ density well and reach the inner boundary at 
X = 0. The evidence of a wave stopgap and wave tunneling 

near X ≈ 0.5 at Z = 0.55 are also found in Ey. On the other 

hand, as soon as the FW packet reaches the region 0.5 < X < 1, 

the IIH resonant wave modes exhibit standing oscillations in 

Ex and the period of the oscillation decreases as X decreases 

(decreasing ηNa concentration). However, for X < 0.5, no 

oscillation of the mode-converted waves is found in Ex.

The wave time history along the Z direction at X = X
0
 is 

plotted in Figs. 3(c) and 3(d). In this case, the FWs in the 

Ey component reach the boundaries in a short time and 

reflect. In this figure, it can be seen that Ey in each location 

along Z has a different period of wave oscillation. Near 

the boundaries, Ey exhibits a mixture of long and short 

period waves, while long period waves only appear near 

the center of the Z direction. On the other hand, waves with 

Ex polarization are localized to within the middle of Z. As 

shown in Figs. 3(a) and 3(b), the wave periods at Z = 0.55 are 

lower than at Z = 0.7. 

Fig. 4 shows the wave spectra of Ex and Ey. Ex in Figs. 

4(a) and 4(b) shows a strong continuous band at the IIH 

resonance wave in the X direction, which is consistent 

with previous numerical results. Because the field-aligned 

wavenumber is not fixed, several harmonics of the IIH 

waves can be seen. The wave power spectra along Z in Figs. 

4(c) and 4(d) also clearly show that the mode-converted 

IIH waves have several eigenfrequencies and are localized 

Fig. 1. Ratio of Na+ density to the electron density in the X-Z plane. The 
sodium concentration has a minimum at the center of the simulation 
domain. The dashed lines show selected locations of X and Z; X0 (Z0) = 0.5 
and 0.7 for Figs. 3 and 4. Fig. 2. Adopted impulsive input (a) in time and (b) in space.
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between the two Buchsbaum resonance locations. The 

second harmonic of the IIH waves has a node near Z 
= 0.55 and an antinode near Z = 0.7; therefore, Ex only 

shows a strong fundamental band in Fig. 4(a) but strong 

fundamental and second harmonics in Fig. 4(b). 

The FWs in the Ey component propagate to the middle 

of the simulation domain and energy in high frequencies, 

where the strong continuous band appears in Ex, cannot 

reach the inner boundary at X = 0. The inaccessibility occurs 

because FWs propagating from Na+-rich to H+-rich plasma 

directly encounter the IIH resonance location where strong 

energy absorption occurs (up to 100% as predicted by Lee 

et al. 2008). For waves with ω/Ω
H

 < 0.3, the FWs are partially 

absorbed at the IIH resonance location and the rest of the 

energy can reach the FW cutoff locations where n2
||
 = εL, and 

then encounter another IIH resonance location at X < 0.5.  

However, when waves propagate from H+-rich to Na+-

rich plasma, wave absorption only occurs in the limited 

frequencies and the absorption coefficient is much lower 

than that of the opposite case, with no continuous band at 

the IIH resonance appearing.

3. DISCUSSION 

In this paper, we show how mode-converted IIH waves can 

be localized in a heavy ion density well in slab coordinates. 

Because the Buchsbaum frequency increases as the heavy ion 

density concentration ratio increases, an irregular ion density 

structure along the field line can lead to an asymmetric 

Fig. 3. Wave time histories of Ex and Ey along X for (a) Z = 0.55 and (b) Z = 
0.7 and along Z for (c) X = 0.55 and (b) X = 0.7, respectively. 

Fig. 5. (a) Arbitrary H+ and Na+ density ratios along the magnetic field 
line at LM = 2; (b) the solid line is the calculated Buchsbaum frequency 
along the magnetic field line by adopting the heavy ion density ratio from 
(a), the dashed line is the Buchsbaum frequency for ηNa = 20%, and the 
dashed-dotted line is the sodium gyrofrequency. Here, the gray-filled area 
is where an IIH wave with 1 Hz can propagate; thus, IIH waves generated 
near the magnetic equator can be localized between -21.7 < Λ < 15 and 
20.5 < Λ < 27.9.

Fig. 4. Wave spectra of the Ex and Ey components along X for (a) Z = 0.55 
and (b) Z = 0.7 and along Z for (c) X = 0.55 and (d) X = 0.7, respectively. 
Dashed lines represent the calculated Buchsbaum frequencies along Z.
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structure of the Buchsbaum frequency. Our results, therefore, 

emphasize the importance of field-aligned heavy ion density 

structures for ULF wave propagation. It should be noted that 

equilibria in magnetospheres with rotational disks generally 

have density structures along the magnetic field lines due to 

centrifugal acceleration, which concentrates the heavy ions 

into the magnetodisk.

In Fig. 5, we demonstrate how asymmetry in the ion 

density ratio affects the field-aligned wave propagation. 

We assumed the field-aligned density structure of η
Na

 

and η
H

 at Mercury, as shown in Fig. 5(a), and calculated 

the Buchsbaum frequency, as shown in Fig. 5(b). When 

plasma contains a constant sodium density of η
Na

 = 20% 

and the Buchsbaum frequency (ω
bb0

), wave frequencies 

that are higher than the highest Buchsbaum frequency do 

not encounter the cutoff condition, and thus can globally 

oscillate in a manner similar to the field-line resonance 

on Earth (Lee & Lysak 1989). However, for an asymmetric 

structure of the ion density, waves generated near the 

magnetic equator with 1 Hz can be localized between -21.7 

< Λ < 15. In addition, if the waves can tunnel through the 

small bump of the Buchsbaum frequency, the waves can 

reach the secondary density well and are possibly localized 

between 20.5 < Λ < 27.9.

Interestingly, the Buchsbaum resonance is also a cutoff 

condition of the Left-Hand Polarization (LHP) EMIC waves 

(Johnson et al. 1995). In Earth’s magnetosphere, as these 

waves propagate along B
0
, the wave normal angle increases 

and becomes nearly 90° when waves reach the Buchsbaum 

resonance. The waves then reflect toward a higher L-shell and 

lower magnetic latitude (Kim & Johnson 2015). Because both 

reflected IIH waves (Kim et al. 2015a) and LHP EMIC waves 

(Kim & Johnson 2015) at the Buchsbaum resonance propagate 

to the different L-shells in the dipole field configuration, 

how 2D/3D heavier ion density structures in the planetary 

magnetosphere relate to propagation characteristics of the IIH 

and LHP EMIC waves remains as future work.

In summary, we investigate how mode-conversion at the 

IIH resonance occurs when heavy ion density has transverse 

and longitudinal inhomogeneity in slab coordinates. The 

multi-ion simulation results show that the IIH waves have 

a continuous band across the field line, which is consistent 

with previous numerical studies. These waves also have 

harmonic structures in frequency domain and are also 

localized in the field-aligned heavy ion density well.
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