• Title/Summary/Keyword: Harmonic reduction system

Search Result 181, Processing Time 0.03 seconds

The Development of Real-Time Harmonic Analysis Algorithm in Distribution Transformer (배전용 변압기의 실시간 고조파 분석 알고리즘 개발)

  • Park, Chul-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.3
    • /
    • pp.43-49
    • /
    • 2013
  • Recently harmonics flowing into power system is increasing as the usage of semiconductor equipments and switching mode power equipments are increasing. Harmonics cause problems such as heat increasing and reduction in capacity of transformers, especially the harmonics flowing into a distribution transformer can lead to the lifetime reduction of transformer. In this paper, we are about to develop a device that can monitor harmonics in real-time as it is affixed to a distribution transformer. Unlike the existing expensive harmonic analysis device, a new harmonic analysis algorithm is proposed in order to implement low-cost equipment. The real-time harmonic analysis algorithm proposed in this paper allows implementation on low performance microcontrollers, thus it can monitor the harmonic in real-time as it is individually affixed to the transformer. Therefore, it would improve the reliability of the transformer and stable power system operation would be possible as it can prevent the transformer accidents in advance.

Harmonics Reduction in Load control and Management system

  • Thueksathit, W.;Tipsuwanporn, V.;Hemawanit, P.;Gulpanich, S.;Srisuwan, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2283-2286
    • /
    • 2003
  • This paper presents conservation of electrical energy in building with harmonics analysis and compensation which occur in electrical system. We use load controlling and management system in order to adjust load factor of system.The maximum demand limiting and controlling are used ,then the system can acquire the prediction and compare it to the maximum demand set point.The electrical signal analysis based on FFT technique. The harmonics are compensated by using harmonic filters.This system consists computer which works as controller, processor , analysis and database unit together with digital power meter in form of multidrop network through serial communication via RS-485.The load control system uses PLC to control load via serial communication RS-485. The A/D converter is used for sampling the electrical signals via parallel port of computer.The harmonic filters are controlled by a computer.The data of measurement such as voltage, current, power, power factor, total harmonic distortion, energy, etc., can be saved as database and analysis. The load factor is adjusted by limiting and controlling maximum demand. The load factor adjustment can reduce the cost of electric consumption and energy generation together with harmonics compensation in order to increase high efficiency of electrical system.

  • PDF

A New Control Algorithm of Series Active Power Filter for Harmonic Reduction in Power System (전력계통 시스템에서 고조파 저감을 위한 새로운 직렬형 능동전력필터의 제어법)

  • Lim, Seung-Won;Han, Yoon-Seok;Kim, Young-Seok;Won, Chung-Yuen;Choi, Se-Wan
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.5
    • /
    • pp.221-228
    • /
    • 2001
  • In this paper, a new control algorithm of series active power filter is proposed to reduce harmonic generated from nonlinear load in power system. In conventional control algorithm, harmonic current must be calculated firstly, and then compensation voltage was calculated by using the results but the proposed control algorithm can calculate compensation voltage directly. Compensating principle of proposed control algorithm is presented in detail. A combined system of series active filter and passive filter is composed in order to experiment. Experiment was carried out to verify proposed control algorithm of series active filter and experimental results are analyzed.

  • PDF

Torque Ripple Reduction for Permanent Magnet Synchronous Motor using Harmonic Current Injection (고조파 전류를 이용한 영구자석형 동기 전동기의 토크 리플 저감)

  • Kwon, Soon-O;Lee, Jeong-Jong;Lee, Geun-Ho;Hong, Jung-Pyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1930-1935
    • /
    • 2009
  • This paper deals with the torque ripple reduction of permanent magnet synchronous motor using harmonic current injection. Torque ripple of electric motor reduces system stability and performances, therefore efforts to reduce torque ripple are exerted in the design process. Torque ripple can be reduced by appropriate pole/slot combination, skew of rotor or stator, design of magnetic circuit, etc. In addition, torque ripple can be also reduced by input voltage and current, and many researches have been conducted to reduce torque ripple for six-step drive. Torque ripple reduction for current vector controlled permanent magnet synchronous motor also have been conducted and verified by investigating back emf wave form. Torque ripple reduction in this paper started from getting torque profile according to input current and electrical angle calculated by FEA, then instantaneous currents at each electrical angles for constant torque are calculated and applied to experiments. Therefore, 0% of torque ripple can be obtained theoretically with harmonic current injection. In order to maximize the effect of torque ripple reduction, a BLDC motor having high harmonic component of back emf is chosen. With sinusoidal current drive, over 100% of torque ripple is obtained initially, then 0.5 % of torque ripple is obtained by FEA using harmonic current injection. The effect is verified by experiment and the presented method can be effectively applicable to Electric Power Steering(EPS).

Estimation of Harmonics on Power System of AC Electric Railway (교류 전기철도 전력계통의 고조파 예측량 계산)

  • 송진호;황유모
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.2
    • /
    • pp.68-79
    • /
    • 2003
  • We estimated harmonics on power system of AC railway based on quantitatively measured harmonics and investigated the need of facilities for harmonics reduction. In order to analysis harmonics which inflow into power system due to increase in collector voltages and harmonic currents generated from the train when the railway is in operation, the railway system Is sectioned into power supply, railway line, AT, sectioning Post and subsectioning post. For analysis of extension of currents resulting from the railway loads, PWM converter, VVVF inverter and the feeder system are modeled based on the dynamic node technique(DNT). In order to test the usefulness of the DNT for analysis of harmonic effects, the measured harmonic currents and harmonic magnification ratios at the S/K substation are compared with simulation results using DNT modelling, which include the results for two cases with and without filters for suppression of harmonic currents. When 8 cars(4M4T) are in operation, the total sum of harmonic currents resulting from the train at M and T phases, which inflow into the substation along with the railway line, is calculated. Using the harmonics analysis program for railway feeder system with these data, the total harmonic distortion factor(710) at the outgoing point of KEPCO substation is computed. The calculation shows that when the maximum THD at the receiving point of H/K substation was 0.0443% which is much lower than 1.5% which is the allowable value of KEPCO at 154kV as well as IEEE-519 above 132kV This result indicates that any measure for harmonics reduction in Incheon International Airport Railway is not needed.

A Study on the Harmonic Reduction Technique in Three-Phase Square-Wave Inverters Formed by Single-Phase Inverters (단상 인버터로 구성된 3상 구형파 인버터의 고조파 저감기법에 관한 연구)

  • 조승연
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.355-359
    • /
    • 2000
  • This paper deal with the harmonic reduction technique in three-phase square-wave inverter system formed by single-phase inverter. To reduce the harmonics six single-phase inverters are used for forming multi-phase inverter and zig-zag connected output transformer for eliminating the harmonic 6(2k-1)$\pm$1 orders. And an ac filter is furnished at output side. Computer simulations show that the THD of the output voltage can be reduced immensely.

  • PDF

A Study on the series Active Power Filter for Harmonic Reduction of 3-Phase 3-Wire System (3상 3선식 시스템의 고조파 저감을 위한 직렬형 능동전력필터에 관한 연구)

  • 한윤석
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.735-738
    • /
    • 2000
  • In this paper we propose a series active power filter and a simple calculation method acquiring the reference voltage. A series active power filter is suitable to suppress harmonics produced by voltage type harmonic source such as a diode rectifier with filter capacitor on the DC side The proposed series active power filter system is applied to 3-phase 3-wire power system including the voltage type harmonic source. Experimental result obtained from a laboratory model are shown to verify the viability and effectiveness of the proposed system.

  • PDF

A Study on the development of Harmonic reduction filter system from PLC control system (PLC제어 시스템에 의한 고조파 제거용 필터 시스템 개발에 관한 연구)

  • An, Hyo-Seop;Shin, Kwan-Woo;Ko, Seok-Bo
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.234-236
    • /
    • 2006
  • In this paper, APF(Active Power Filter) will be treated in order to improve the output current distortion of the AC source. APF generates the harmonic current which contributes to a source side harmonic reduction. We can extract the compensating current of the parallel APF with phase transformations and the proposed current control method. Therefore, the calculation times is short and the control method is simple compared with conventional hysteresis methods. Experimental results verify that the system using the proposed method appers a good performance.

  • PDF

Harmonic Reduction of Parallel-Connected Thyristor Rectifiers with an Active Interphase Reactor

  • Choi, Sewan;Oh, Junyong;Kim, Kiyong
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.276-280
    • /
    • 1998
  • This paper proposes a harmonic a harmonic reduction technique of the parallel-connected twelve-pulse thyristor rectifiers. The proposed system is an improvement over the diode rectifier system with an active interphase reactor [2]. In this scheme, a low KVA (0.15 Po (PU) ) active current source injects a triangular current into an interphase reactor of a twelve-pulse thyristor rectifier along the phase delay angle. The current injection results in near sinusoidal input current with less than 1% THD. Detailed analysis of the proposed scheme along scheme along with design equations is illustrated. Simulation results verify the concept.

  • PDF

A Study on the Series Active Power Filter for Harmonic Reduction and Unbalanced Source Voltage Compensation (전류 고조파와 불평형 전원 전압 보상을 위한 직렬형 능동전력필터에 관한 연구)

  • Oh, Jae-Hoon;Han, Yoon-Seok;Kim, Young-Seok;Won, Chung-Yuen;Choi, Se-Wan
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.191-194
    • /
    • 2001
  • In this paper, we propose a series active power filter control method to compensate current harmonics and unbalanced source voltage. The system is composed of series active power filter and shunt passive filer that are tuned 5th and 7th harmonics. In this conventional system, series active power filter complements drawbacks of the shunt passive filter, namely improves harmonic compensation characteristics, and compensates unbalanced source voltage. In the proposed algorithm, compensation voltage for harmonic reduction is calculated by performance function, and compensation voltage for unbalanced source voltage is calculated in based on a synchronous reference frame. So, ultimate compensation voltage is sum of those two compensation voltages. By computer simulation, we verify the excellency of proposed method.

  • PDF