• Title/Summary/Keyword: Harmonic generation

Search Result 437, Processing Time 0.031 seconds

A characteristics study on the Second-harmonic generation conversion efficiency of Pulsed Nd:YAG Laser adopted Superposition multiple Mesh Networks (중첩다단 메쉬회로를 적용한 펄스형 Nd:YAG 레이저의 2차 고조파 변환효율에 관한 특성연구)

  • 김휘영
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.4
    • /
    • pp.565-572
    • /
    • 2001
  • At the most recent years, laser medical instruments, laser applications and laser nuclear fusion need strong visible light and ultraviolet rays. Nonlinear optical devices, such as harmonic generators and parametric oscillators, provide a means of extending the frequency range of available laser sources. Frequency conversion is a useful technique for extending the utility of high-power lasers. It utilizes the nonlinear optical response of an optical medium in intense radiation fields to generate new frequencies. These progresses have been used to generate high-power radiation in all spectral regions, from the ultraviolet to the far infrared. Optical parametric oscillators and amplifiers generate two waves of lower frequency They are capable of generating a range of wavelengths from a single frequency source, in some cases spanning the entire visible and near infrared regions. Consequently, in order to obtain the green light, the pulsed Nd:YAG laser using multiple-mesh PFN(Pulsed Forming Network) method with Nonlinear optical device was adopted. We compared the current pulseshapes with the laser output energy, and conversion efficiency.

  • PDF

Accuracy Assessment of the Upward Continuation using the Gravity Model from Ultra-high Degree Spherical Harmonics (초 고차항 구 조화 중력모델링에 의한 상향 연속의 정확도 검증)

  • Kwon Jay-Hyoun;Lee Jong-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.2
    • /
    • pp.183-191
    • /
    • 2006
  • The accuracy of the upward continuation is assessed through the gravity modeling using an ultra-high degree spherical harmonic expansion. The difficulties in the numerical calculation of Legendre function with ultra-high degree, underflow and/or overflow, is successfully resolved in 128 bit calculation scheme. Using the generated Legendre function, the gravity anomaly with spatial resolution of $1'{\times}1'$ on the geoid is calculated. The generated gravity anomaly is degraded and extracted with various noise levels and data intervals, then upward continuation is applied to each data sets. The comparison between the upward continued gravity disturbances and the directly calculated from the spherical harmonics showed that the accuracy on the direct method was significantly better than that of Poisson method. In addition, it is verified that the denser and less noised gravity data on the geoid generates better gravity disturbance vectors at an altitude. Especially, it is found that the gravity noise level less than 5mGal, and the data interval less than 2arcmin is necessary for next generation precision INS navigation which requires the accuracy of 5mGal or better at an altitude.

Sea Level Change due to Nonlinear Tides in Coastal Region (연안해역에서 비선형 조석으로 인한 해수면 변화)

  • Jung, Tae Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.5
    • /
    • pp.228-238
    • /
    • 2017
  • In coastal region, tidal harmonic constants of semi-diurnal tides and nonlinear tides were collected. The observed tide data of KHOA were analyzed by a tide harmonic analysis method. In the southwestern coasts and Han river estuary, nonlinear tides are clearly generated. The generation of tide non-linearity and tide asymmetry is closely related with tide form factor in Korean coastal zone. Tide non-linearity and asymmetry in Mokpo harbour have increased by a series of coastal development projects. The increase has caused rise of high water level and drop of low water level, and increase of tidal range. In Kunsan Outport, tidal range has been declined due to inter-annual change of nonlinear tides after completion of Samangeum sea-dyke.

Performance Analysis of load simulator interconnected with Power Quality Compensator (전력품질 보상기와 부하모의장치의 연계시험 분석)

  • Bae, Byung-Yeol;Cho, Yun-Ho;Park, Yong-Hee;Han, Byung-Moon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.89-97
    • /
    • 2007
  • This paper describes a load simulator with power recovery capability, which is based on the voltage source converter-inverter set. The load simulator can save the electric energy that should be consumed to test the operation and performance of the power quality compensator and the power equipment. The load simulator consists of a converter-inverter set with a DSP controller for system control and PWM pulse generation. The converter operates as a universal load to model the linear load and the non-linear load, while the inverter feed the energy back to the power source with harmonic compensation. the performance of proposed load simulator was analyzed with scaled-model experiment, interconnected with the active power filter. The experimental results confirms that the proposed load simulator can be utilized to test the performance of active power filter.

A Grid-interactive PV Generation System with the Function of the Power Quality Improvement (전력품질개선기능을 갖는 계통연계형 태양광 발전시스템)

  • Ko, Sung-Hun;Cho, Ah-Ran;Kang, Dae-Up;Park, Chun-Sung;Jeon, Chil-Hwan;Lee, Seong-Ryong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.300-309
    • /
    • 2007
  • In this paper, a grid-interactive photovoltaic (PV) system with the function of the power quality improvement is presented. The proposed system requires only one current-controlled voltage source inverter, which control the current flow at low total harmonic distortion and unity power factor, as well as simultaneously provide reactive power support. The proposed system operation has been divided into two modes (sunny and night). In night mode, the system operates to compensate the reactive power demanded by nonlinear or variation in loads. In sunny mode, the system performs power quality control (PQC) to reduce harmonic current and to improve power factor as well as maximum power point tracking (MPPT) to supply active power from the PV arrays, simultaneously. To verify the proposed system a comprehensive evaluation included simulation and experimental results are presented.

A Study on the Operating Characteristics of the Aged ELCB according to the Overcurrent (노후화된 누전차단기의 과전류 동작 특성에 관한 연구)

  • Ye Jin Park;Sin Dong Kang;Jae-Ho Kim
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.5
    • /
    • pp.1-7
    • /
    • 2023
  • This study analyzes the operational characteristics of 311 aged and non-aged residual current circuit breakers (RCCBs) in low-voltage consumer contexts. It investigates the influence of external temperature and harmonics based on the rated current multiples. To simulate temperature variations, a convectional oven was used around the circuit breakers. Additionally, the generation of harmonic reference signals and data measurement for overcurrent experiments were conducted using NI SCXI, myDAQ, and LabVIEW. An observation revealed that as the ambient temperature increased, the operating time of RCCBs decreased in the time delay region. This was attributed to the faster response or bending of the bimetal, which is the tripping element. However, aged RCCBs encountered challenges with tripping outside the protective curve. The operating time of the circuit breakers exhibited an acceleration influenced by the order and content of harmonic currents, potentially leading to malfunctions. Aged RCCBs demonstrated faster operating times than their non-aged counterparts. However, the difference in operating time varied based on the manufacturer's and operating environment of the RCCBs. Frequent malfunctions of RCCBs can result in power outages. In cases where these circuit breakers fail to operate, they can lead to secondary damages, including electrical fires and shocks. Consequently, it is imperative to consider the operating environment of RCCBs and provide appropriate replacement cycles to mitigate these risks.

Measurement of picosecond laser pulsewidth and pulseshape by two-photon fluorescence and noncolloinear type I second harmonic generation method (이광자 형광법과 비공선 일종 이차고조파법에 의한 피코초 레이저 펄스폭과 펄스형 측정)

  • 한기호;박종락;이재용;김현수;엄기영;변재오;공흥진
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.3
    • /
    • pp.251-259
    • /
    • 1996
  • Two-Photon Fluorescence (TPF) experiment measures temporal width of an amplified short laser pulse which has passed through a four-pass Nd: glass amplifier, after selecting a single pulse from pulse train Q-switched and mode-locked(QSML) in Nd:YLF master oscillator. Determination of pulsewidth and pulseshape was also made with detection of autocorrelation trace of CW mode-locked pulse train by using noncollinear type I Second Harmonic Generation (SHG) method. The observed TPF track showed various patterns, depending on pulse-selecting position in QSML pulse train. That is, autocorrelation of a pulse extracted at front of the train displayed smooth pulse shape, while one from the trailing part of the train created many sharp spikes and substructure in the pulse. By TPF method, pulsewidth was measured to be 44.4 ps with contrast ratio of 2.86 which enabled us to find out energy fraction of a pulse to total energy, (sum of pulse and background); we obtain the value of 0.62. Pulsewidth of 46.6ps was also acquired in another SHG experiment with the help of only mode-locked pulse train. On the other hand, we confirmed that shape of the pulse is close to $sech^2$ one as a result of fitting the SHG autocorrelation signal with various functions. With simulation using this $sech^2$ type of pulse, pulsewidth reduction of the beam, having passed through four-pass amplifier, was also verified.

  • PDF

Decontamination Characteristics of 304 Stainless Steel Surfaces by a Q-switched Nd:YAG Laser at 532 nm (532 nm 파장의 큐스위치 Nd:YAG 레이저를 이용한 스테인리스 스틸 표면 제염특성)

  • Moon, Jei-Kwon;Baigalmaa, Byambatseren;Won, Hui-Jun;Lee, Kune-Woo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.3
    • /
    • pp.181-188
    • /
    • 2010
  • Metal surface decontamination characteristics were investigated by using a laser ablation method. A second harmonic generation of a Q-switched Nd:YAG laser with a wave length of 532 nm, a pulse energy of 150 mJ and a pulse width of 5 ns was employed to assess the decontamination performance for metal surfaces contaminated with $CsNO_3$, $Co(NH_4)_2(SO_4)_2$, $Eu_2O_3$ and $CeO_2$. The ablation behavior was investigated for the decontamination variables such as a number of laser shots, laser fluence and an irradiation angle. Their optimum values were found to be 8, 13.3 J/$cm^2$ and $30^{\circ}$, respectively. The decontamination efficiency was different depending on the kinds of the contaminated ions, due to their different melting and boiling points and was in the order: $CsNO_3>Co(NH_4)_2(SO_4)_2>Eu_2O_3>CeO_2$. We also evaluated a correlation between the metal ablation thickness and the number of laser shots for the different laser fluences.

Frequency Doubling in LiIO3 Crystals by the Ring Enhancement Cavity (고리형 증폭 공진기에 의한 LiIO3결정에서 제2조화파 발생)

  • Kim, Sang-Gee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.4 no.2
    • /
    • pp.45-49
    • /
    • 1999
  • The second harmonic, wavelength is 397nm, of the continuous wave diode laser, whose maximum power is 35mW, was generated in $LiIO_3$ crystals in a ring enhancement cavity. 5mm- and 10mm-long crystals cut $43.21^{\circ}$ for optic axis were used in this experiment. Both surfaces of those were anti-reflection coated for 794nm. In case the crystal was inserted into the cavity, the condition of separation between two concave mirrors for the optimum mode matching was found. The conversion efficiency of second harmonic generation was increased by the resonant enhancement of pumping power in the ring enhancement cavity, and the frequency of diode laser was locked to that of the counter-propagation mode generated from the surface of crystal. When the pumping power was 28 mW, the infrared buildup factor was about 45 without the crystal, and 14 with the crystal due to the transmission loss of crystal. The maximum second harmonic powers of $1.5{\mu}W$ and $6.6{\mu}W$ were obtained, and corresponding conversion efficiencies were $(6.584{\pm}0.56){\times}10^{-3}$%, $2.6{\pm}0.21){\times}10%{-2}$% in 5mm- and 10mm-long $LiIO_3$, respectively.

  • PDF

Second Harmonic Rotational Anisotropy of Polycrystalline Fe Films on Glass Substrates (유리 위에 증착된 다결정 Fe 자성박막의 이차조화파 회전 이방성)

  • Lee, Feel;Jeong, Jae-Woo;Lee, Hun-Sung;Lee, Kyung-Dong;Kim, Ji-Wan;Shin, Sung-Chul
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.2
    • /
    • pp.47-51
    • /
    • 2009
  • The surface structure of polycrystalline Fe films of various thicknesses on glass substrates have been studied using a Ti: Sapphire laser at 780 nm. We found that the surface structure possesses C$_s$ crystal structure close to $C_{2v}$ through symmetry consideration. We present one-fold intensity profile with one mirror plane in second harmonic (SH) intensity as a proof of $C_s$ symmetry. $C_s$ and $C_{2v}$ surface symmetries usually appear at the (110) surface of a cubic diamond single crystal [1]. Therefore this surface symmetry would be related to bcc (110) growth orientation coinciding with XRD measurement. Further we treated surface normalized SH asymmetry with various thicknesses. The SH asymmetry increases with increasing of film thickness. From these results, it is observed that the surface structure of thin polycrystalline Fe film below 5 nm is almost isotropic, while in the case of the thicker Fe films, surface structure have $C_s$ symmetry structure close to $C_{2v}$.