• Title/Summary/Keyword: Harmonic elimination characteristics

Search Result 16, Processing Time 0.291 seconds

A Gear Changing Technique of an Inverter for Variable Speed Drive Using Hybrid PWM (하이브리드 PWM에 의한 인버터 가변속 운전시의 패턴절환기법)

  • 서영민;박영진;홍순찬
    • Proceedings of the KIPE Conference
    • /
    • 1998.11a
    • /
    • pp.64-67
    • /
    • 1998
  • This paper proposes the hybrid PWM scheme that can obtain less harmonic characteristics in GTO inverters. By employing the variable of the dc-link voltage Vdc, the hybrid PWM pattern can ideally compensate the dc input fluctuation together with selected harmonics elimination. The transient behavior, which the magnetic flux and torque are altered and the large current flows instantly, may be produced when the mode change. To reduce such an undesirable transient behavior, it is also presented the technique for the gear changing of inverter operated with the hybrid PWM. The results are verified by simulations and experiments.

  • PDF

Series Active Power Filters to Compensate Harmonics and Reactive Power with the Direct Compensating Voltage Extraction Method in Three-Phase Four-Wire Systems

  • Kim, Jin-Sun;Kim, Young-Seok
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.691-699
    • /
    • 2009
  • This paper presents the analysis of series active power filter for reactive power compensation, load balancing, harmonic elimination, and neutral current eradication in three-phase four-wire power systems. Generally, the three-phase four-wire system is widely employed in distributing electric energy to several office building and manufacturing plants. In such systems, the third harmonic and its 3rd harmonics are termed as triple and zero sequence components that do not cancel each other in the system neutral. Consequently, the triple harmonics add together creating a primary source of excessive neutral current. Regarding this concern, this paper presents a new control algorithm for a series hybrid active system, whereas the control approach it adopts directly influence its compensation characteristics. Hence, the advantage of this control algorithm is the direct extraction of compensation voltage reference without phase transformations and multiplying harmonic current value by gain and the required rating of the series active filter is much smaller than that of a conventional shunt active power filter. In order to show the effectiveness of the proposed control algorithm, experiments have been carried out.

Redundancy Module Operation Analysis of MMC using Scaled Hardware Model (축소모형을 이용한 MMC의 Redundancy Module 동작분석)

  • Yoo, Seung-Hwan;Shin, Eun-Suk;Choi, Jong-Yun;Han, Byung-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1046-1054
    • /
    • 2014
  • In this paper, a hardware prototype for the 10kVA 11-level MMC was built and various experimental works were conducted to verify the operation algorithms of MMC. The hardware prototype was designed using computer simulation with PSCAD/EMTDC software. After manufactured in the lab, the hardware prototype was tested to verify the modulation algorithms to form the output voltage, the balancing algorithm to equalize the sub-module capacitor voltage, and the redundancy operation algorithm to improve the system reliability. The developed hardware prototype can be utilized for analyzing the basic operation and performance improvement of MMC according to the modulation and redundancy operation scheme. It also can be utilize to analyze the basic operational characteristics of HVDC system based on MMC.

Hybrid PWM Modulation Technology Applied to Three-Level Topology-Based PMSMs

  • Chen, Yuanxi;Guo, Xinhua;Xue, Jiangyu;Chen, Yifeng
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.146-157
    • /
    • 2019
  • The inverter is an essential part of permanent magnet synchronous motor (PMSM) drive systems. The performance of an inverter is greatly influenced by its modulation strategy. Using a proper management of modulation strategies can guarantee high performance from a PMSM under various speed conditions. Switching between modulations is a pivotal technique that determines the performance of a PMSM. Most works on hybrid methods focus on two-level induction motors drive systems. In this paper, in order to improve the performance of PMSMs under various speed conditions, a hybrid method of a pulse width modulation (PWM) control scheme based on a neutral-point-clamped (NPC) three level topology was proposed. This hybrid PWM modulation comprised space vector PWM (SVPWM) and selective harmonic elimination PWM (SHEPWM). Under low speed conditions, the SVPWM is employed to cause the PMSM to start smoothly, and to obtain a rapid response from the control system. Under high speed conditions, the SHEPWM is employed to reduce the switching frequency and to eliminate particular current harmonics. Moreover, the harmonic characteristics of different modulations are analyzed to obtain a smooth transition between the SHEPWM and the SVPWM. Experimental and simulation results indicated the effectiveness of the proposed control method.

AC Plasma Power Supply with Variable Voltage and Variable Frequency (가변전압 가변주파수(VVVF) 교류 플라즈마 전원장치)

  • Shin Wan-Ho;Yun Kee-Pok;Jeoung Hwan-Myoung;Choi Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1205-1207
    • /
    • 2004
  • AC plasma power supply is used to control a ozone generator and a air pollution gas. AC plasma power supply is composed of power semiconductor switch devices and control board adapted SHE(Selected Harmonic Elimination) PWM method. AC plasma power supply with sinusoidal VVVF(variable voltage and variable frequency) is realized. Its output voltage range is from 0 [V] to 20[kV] and output frequency range is from 8[kHz] to 20[kHz]. Using proposed system, AC high voltage and high frequency discharge is tested in the DBD(dieletric barrier discharge) reactor, and the space distribution of a its non-thermal plasma is observed. In spite of the increasement of voltage and frequency, the proposed system have a stable operation characteristics. It is verified by the experimental results.

  • PDF

A DTC Stator Flux Algorithm for the Performance Improvement of Induction Traction Motors

  • Van-Tien, Pham;Zheng, Trillion Q.;Yang, Zhong-ping;Lin, Fei;Do, Viet-dung
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.572-583
    • /
    • 2016
  • In view of the speed control characteristics of induction traction motors and the problems of direct torque control (DTC) algorithms in current applications, this paper presents a DTC algorithm characterized by a symmetrical polygon flux control and a closed loop power control in the constant-torque base speed region and constant-power field-weakening region of induction traction motors. This algorithm only needs to add a stator flux control algorithm to the traditional DTC structures. This has the benefit of simplicity, while maintaining the features of traditional algorithms such as a rapid dynamic response, uncomplicated control circuit, reduced dependence on motor parameters, etc. In addition, it obtains a smoother flux trajectory that is conducive to improvement of the harmonic elimination capability, the switching frequency utilization as well as the torque and power performance in the field-weakening region. The effectiveness and feasibility of this DTC algorithm are demonstrated by both theoretical analysis and experimental results.