• 제목/요약/키워드: Harmonic Wave

검색결과 446건 처리시간 0.026초

Nonlinear Time Reversal Focusing and Detection of Fatigue Crack

  • Jeong, Hyun-Jo;Barnard, Dan
    • 비파괴검사학회지
    • /
    • 제32권4호
    • /
    • pp.355-361
    • /
    • 2012
  • This paper presents an experimental study on the detection and location of nonlinear scattering source due to the presence of fatigue crack in a laboratory specimen. The proposed technique is based on a combination of nonlinear elastic wave spectroscopy(NEWS) and time reversal(TR) focusing approach. In order to focus on the nonlinear scattering position due to the fatigue crack, we employed only one transmitting transducer and one receiving transducer, taking advantage of long duration of reception signal that includes multiple linear scattering such as mode conversion and boundary reflections. NEWS technique was then used as a pre-treatment of TR for spatial focusing of reemitted second harmonic signal. The robustness of this approach was demonstrated on a cracked specimen and the nonlinear TR focusing behavior is observed on the crack interface from which the second harmonic signal was originated.

N승 비선형 장치의 출력 SN비 및 고조파 발생 (Output Signal to Noise Ratio and Harmonic Generation of Nth Power Law Nonlinear Devices.)

  • 김재공;고병준
    • 대한전자공학회논문지
    • /
    • 제9권5호
    • /
    • pp.12-18
    • /
    • 1972
  • 정현 신호 및 zero 평균 정상 정규 잡음의 협대역파 신호를 갖는 n차 반파 zero기억형 비선형 장치의 출력 SN 비 및 m차 고조파 발생의 관계를 밝혔다. 최대 출력 SN비는 소 신호 입력에서 m=n=2 이었으며 대 신호 입력에선 항시 n=2이었다.

  • PDF

고전압 펄스 발생 장치의 관한 부하의 변화를 고려한 펄스회로의 이론적 연구 (Theoretical Study of Pulse Circuits with the Load Variation for Device of the High Voltage Pulse Generator)

  • 김영주;방상석;이채한;김상현
    • 조명전기설비학회논문지
    • /
    • 제30권3호
    • /
    • pp.106-112
    • /
    • 2016
  • The high-voltage pulse generator consists of transformers of fundamental wave and harmonic waves, and shunt capacitors. The pulse has the fundamental wave and the harmonic waves that have been as a series circuit by the transformers to make high voltage pulse. This paper shows that pulse generator circuit is analyzed by using transformer equivalent circuits with the effect of load and simulated in time domain using Matlab program. The output voltage of pulse were obtained to 2.5kHz, 2.0kV. In high voltage circuit, capacitors are related to frequency band pass characteristics. Also, it is shown that the voltage of output pulse increases according to the growth of load.

Reflection of plane harmonic wave in rotating media with fractional order heat transfer

  • Kaur, Iqbal;Lata, Parveen;Singh, Kulvinder
    • Advances in materials Research
    • /
    • 제9권4호
    • /
    • pp.289-309
    • /
    • 2020
  • The aim of the present investigation is to examine the propagation of plane harmonic waves in transversely isotropic homogeneous magneto visco thermoelastic rotating medium with fractional order heat transfer and two temperature. It is found that, for two dimensional assumed model, there exist three types of coupled longitudinal waves (quasi-longitudinal, quasi-transverse and quasi-thermal) in frequency domain. phase velocities, specific loss, penetration depth, attenuation coefficients of various reflected waves are computed and depicted graphically. The effects of viscosity and fractional order parameter by varying different values are represented graphically.

Normal Mode Approach to the Stability Analysis of Rossby-Haurwitz Wave

  • Jeong, Hanbyeol;Cheong, Hyeong Bin
    • 한국지구과학회지
    • /
    • 제38권3호
    • /
    • pp.173-181
    • /
    • 2017
  • The stability of the steady Rossby-Haurwitz wave (R-H wave) in the nondivergent barotropic model (NBM) on the sphere was investigated with the normal mode method. The linearized NBM equation with respect to the R-H wave was formulated into the eigenvalue-eigenvector problem consisting of the huge sparse matrix by expanding the variables with the spherical harmonic functions. It was shown that the definite threshold R-H wave amplitude for instability could be obtained by the normal mode method. It was revealed that some unstable modes were stationary, which tend to amplify without the time change of the spatial structure. The maximum growth rate of the most unstable mode turned out to be in almost linear proportion to the R-H wave amplitude. As a whole, the growth rate of the unstable mode was found to increase with the zonal- and total-wavenumber. The most unstable mode turned out to consist of more-than-one zonal wavenumber, and in some cases, the mode exhibited a discontinuity over the local domain of weak or vanishing flow. The normal mode method developed here could be readily extended to the basic state comprised of multiple zonalwavenumber components as far as the same total wavenumber is given.

2011년 1월의 동아시아 한랭 아노말리 특성 (Characteristic Features Observed in the East-Asian Cold Anomalies in January 2011)

  • 최우갑;정지연;전종갑
    • 대기
    • /
    • 제23권4호
    • /
    • pp.401-412
    • /
    • 2013
  • East Asia experienced extremely cold weather in January 2011, while the previous December and the following February had normal winter temperature. In this study National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data are used to investigate the characteristic features observed in the meteorological fields such as temperature, sea-level pressure, geopotential height, and wind during this winter period. In January the planetary-wave pattern is dominated by stationary-wave form in the mid-to-high latitude region, while transient waves are significant in the previous month. To understand the planetary-wave features quantitatively, harmonic analyses have been done for the 500-hPa geopotential height field. In the climatological-mean geopotential heights the wave numbers 1, 2, and 3 are dominant during the whole winter. In January 2011 the waves of number 1, 2, and 3 are dominant and stationary as in the climatological-mean field. In December 2010 and February 2011, however, the waves of number 4, 5, and 6 play a major role and show a transient pattern. In addition to the distinctive features in each month the planetary-wave patterns dependent on the latitude are also discussed.

파력발전용 병진 질량-스프링식 파력 변환장치의 동적설계 (Dynamic Design of a Mass-Spring Type Translational Wave Energy Converter)

  • 최영휴;이창조;홍대선
    • 한국생산제조학회지
    • /
    • 제21권1호
    • /
    • pp.182-189
    • /
    • 2012
  • This study suggests a dynamic design process for deciding properly design parameters of a mass-spring type Wave Energy Converter (WEC) to achieve sufficient energy conversion from wave to power generator. The WEC mechanism, in this research, consists of a rigid sprung body, a platform, suspension springs and dampers. The rigid sprung body is supported on the platform via springs and dampers and vibrates translationally in the heave direction under wave excitation. At last the resulting heave motion of the sprung body is transmitted to rotating motion of the electric generator by rack and pinion, and transmission gears. For the purpose of vibration analysis, the WEC mechanism has been simply modelled as a mass-spring-damper system under harmonic base excitation. Its maximum displacement transmissibility and steady state response can be determined by using elementary vibration theory if the harmonic ocean wave data were provided. With the vibration analysis results, the suggested dynamic design process of WEC can determine all the design parameters of the WEC mechanism, such as sprung body mass, suspension spring constant, and damping coefficient that can give sufficient relative displacement transmissibility and the associated inertia moment to drive the electric generator and transmission gears.

Three-Dimensional Effects on Added Masses of Ship-Like Forms for Higher Harmonic Modes

  • Y.K.,Chon
    • 대한조선학회지
    • /
    • 제25권2호
    • /
    • pp.19-30
    • /
    • 1988
  • Sectional added masses of an elastic beam vibrating vertically on the free surface in higher harmonic modes are evaluated. Hydrodynamic interactions between neighboring sections, which strip theory ignores, are considered for modal wave lengths of the order of magnitude of cross-sectional dimensions of the body. An approximate solution of modified Helmholtz equation which becomes a singular perturbation problem at small wave lengths is secured to get an analytic expression for added masses attending higher harmonic modes. As a bound of the present theory, the modified Helmholtz equation is solved for the long flat plate vibrating at high frequency on the water surface without any limitations on modal frequency. Finally, extensive series of numerical calculations are carried out for ship-like forms. It is found that when modal wave length is comparable to or shorter than a typical cross-sectional dimension of a body, sectional interaction effects are large which result in considerable reductions in added masses. For a fuller section, the ratio of added mass reduction is greater. In the limit of vanishing sectional area, the added masses approach to that of flat plate of equal beam. It is shown that the added mass distribution for a Legendre modal from can be determined form the present theory and that the results agree with the extensive three-dimensional determination of Vorus and Hilarides.

  • PDF

다중주파수 시간좌화신호를 사용한 도체기중의 초고주파 incoherent 영상:Part I - 다중주파수 시간좌화신호를 사용한 incoherent 전력패턴 (Microwave Incoherent Imaging of a Conducting Cylinder by Using Multi-Frequency Time-Harmonic Field : Part I - Incoherent Intensity Pattern by Using Multi-Frequency Time-Harmonic Field)

  • 강진섭;라정웅
    • 전자공학회논문지B
    • /
    • 제33B권2호
    • /
    • pp.47-55
    • /
    • 1996
  • A microwave incoherent imaging method for a conducting cyliner by using multi-frequency tiem-harmonic field is presented in this study. In this paper, an incoherent intensity pattern of th econducting cylinder is obtained by averagin gout the multi-frequency intensities of the coherent field such as the time-harmonic field scattered from this cylinder. This phenomenon is hsown numerically in scattering by a conducting circular cylinder illuminated by the time-harmonic plane wave, and is interpreted analytically by the mutual coherence functon defined as a frequency-averaged intensity of the time-harmonic fields in th frequency domain.

  • PDF

Study of viscoelastic model for harmonic waves in non-homogeneous viscoelastic filaments

  • Kakar, Rajneesh;Kaur, Kanwaljeet;Gupta, Kishan Chand
    • Interaction and multiscale mechanics
    • /
    • 제6권1호
    • /
    • pp.31-50
    • /
    • 2013
  • A five parameter viscoelastic model is developed to study harmonic waves propagating in the non-homogeneous viscoelastic filaments of varying density. The constitutive relation for five parameter model is first developed and then it is applied for harmonic waves in the specimen. In this study, it is assumed that density, rigidity and viscosity of the specimen i.e., rod are space dependent. The specimen is non-homogeneous, initially unstressed and at rest. The method of non-linear partial differential equation has been used for finding the dispersion equation of harmonic waves in the rods. A simple method is presented for reflections at the free end of the finite non-homogeneous viscoelastic rods. The harmonic wave propagation in viscoelastic rod is also presented numerically with MATLAB.