• Title/Summary/Keyword: Harmonic Control

Search Result 1,137, Processing Time 0.029 seconds

Capacitance reduction method for single-phase PWM converters using the 3rd harmonic injection and PR controller. (3차 고조파 주입과 PR 제어기를 이용한 단상 PWM 컨버터의 커패시터 용량 저감 기법)

  • Kim, Gyu-Dong;Yang, Hyun-Suk;Lee, Dong-Myung
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.1-2
    • /
    • 2013
  • In this paper, we inject input currents having $3^{rd}$ harmonic to reduce the capacitance of DC link capacitors in single-phase converters. If the input current with third harmonic is injected, the required capacitance can be reduced by minimizing the difference between the input and output power. To control the input current, instead of PI control done in rotating frame, PR controller is used with the proposed separate current control method for fundamental and $3^{rd}$ harmonic components. The validity of the proposed method has been demonstrated by simulation results.

  • PDF

Improved Reactive Power Sharing and Harmonic Voltage Compensation in Islanded Microgrids Using Resistive-Capacitive Virtual Impedance

  • Pham, Minh-Duc;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1575-1581
    • /
    • 2019
  • Due to the mismatched line impedance among distributed generation units (DGs) and uncontrolled harmonic current, the droop controller has a number of problems such as inaccurate reactive power sharing and voltage distortion at the point of common coupling (PCC). To solve these problems, this paper proposes a resistive-capacitive virtual impedance control method. The proposed control method modifies the DG output impedance at the fundamental and harmonic frequencies to compensate the mismatched line impedance among DGs and to regulate the harmonic current. Finally, reactive power sharing is accurately achieved, and the PCC voltage distortion is compensated. In addition, adaptively controlling the virtual impedance guarantees compensation performance in spite of load changes. The effectiveness of the proposed control method was verified by experimental results.

Efficient Harmonic-CELP Based Low Bit Rate Speech Coder (효율적인 하모닉-CELP 구조를 갖는 저 전송률 음성 부호화기)

  • 최용수;김경민;윤대희
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.35-47
    • /
    • 2001
  • This paper describes an efficient harmonic-CELP speech coder by taking advantages of harmonic and CELP coders into account. According to frame voicing decision, the proposed harmonic-CELP coder adopts the RP-VSELP coder as a fast CELP in case of an unvoiced frame, or an improved harmonic coder in case of a voiced frame. The proposed coder has main features as follows: simple pitch detection, fast harmonic estimation, variable dimension harmonic vector quantization, perceptual weighting reflecting frequency resolution, fast harmonic synthesis, naturalness control using band voicing, and multi-mode. These features make the proposed coder require very low complexity, compared with HVXC coder To demonstrate the performance of the proposed coder, a 2.4 kbps coder has been implemented and compared with reference coders. From results of informal listening tests, the proposed coder showed good quality while requiring low delay and complexity.

  • PDF

Improved DPC Strategy of Grid-connected Inverters under Unbalanced and Harmonic Grid Conditions

  • Shen, Yongbo;Nian, Heng
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.169-175
    • /
    • 2014
  • This paper presents an improved direct power control (DPC) strategy for grid-connected voltage source inverter (VSI) under unbalanced and harmonic grid voltage conditions. Based on the mathematic model of VSI with the negative sequence, 5th and 7th harmonic voltage components consideration, a PI controller is used in the proposed DPC strategy to achieve the average output power regulation. Furthermore, vector PI controller with the resonant frequency tuned at the two times and six times grid fundamental frequency is adopted to regulate both negative and harmonic components, and then two alternative targets of the balanced/sinusoidal current and smooth active/reactive output power can be achieved. Finally, simulation results based on MATLAB validate the availability of the proposed DPC strategy.

Enhanced Variable On-time Control of Critical Conduction Mode Boost Power Factor Correction Converters

  • Kim, Jung-Won;Yi, Je-Hyun;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.890-898
    • /
    • 2014
  • Critical conduction mode boost power factor correction converters operating at the boundary of continuous conduction mode and discontinuous conduction mode have been widely used for power applications lower than 300W. This paper proposes an enhanced variable on-time control method for the critical conduction mode boost PFC converter to improve the total harmonic distortion characteristic. The inductor current, which varies according to the input voltage, is analyzed in detail and the optimal on-time is obtained to minimize the total harmonic distortion with a digital controller using a TMS320F28335. The switch on-time varies according to the input voltage based on the computed optimal on-time. The performance of the proposed control method is verified by a 100W PFC converter. It is shown that the optimized on-time reduces the total harmonic distortion about 52% (from 10.48% to 5.5%) at 220V when compared to the variable on-time control method.

An Enhanced Instantaneous Circulating Current Control for Reactive Power and Harmonic Load Sharing in Islanded Microgrids

  • Lorzadeh, Iman;Abyaneh, Hossein Askarian;Savaghebi, Mehdi;Lorzadeh, Omid;Bakhshai, Alireza;Guerrero, Josep M.
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1658-1671
    • /
    • 2017
  • To address the inaccurate load demand sharing problems among parallel inverter-interfaced voltage-controlled distributed generation (DG) units in islanded microgrids (MGs) with different DG power ratings and mismatched feeder impedances, an enhanced voltage control scheme based on the active compensation of circulating voltage drops is proposed in this paper. Using the proposed strategy, reactive power and harmonic currents are shared accurately and proportionally without knowledge of the feeder impedances. Since the proposed local controller consists of two well-separated fundamental and harmonic voltage control branches, the reactive power and harmonic currents can be independently shared without having a remarkable effect on the amplitude or quality of the DGs voltage, even if nonlinear (harmonic) loads are directly connected at the output terminals of the units. In addition, accurate load sharing can also be attained when the plug-and-play performance of DGs and various loading conditions are applied to MGs. The effects of communication failures and latency on the performance of the proposed strategy are also explored. The design process of the proposed control system is presented in detail and comprehensive simulation studies on a three-phase MG are provided to validate the effectiveness of the proposed control method.

The effect of Harmonic Distortion Reduction on Three Phase Three level Inverter Using Neutral Point Control (3상 3레벨 인버터의 중성점 제어를 이용한 고조파 왜율 저감 효과)

  • Kim, Jeong Gyu;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.90-94
    • /
    • 2018
  • In this paper, we applied a three-level T-type inverter with the one more voltage level than two-level inverter. However, the three-level T-type inverter has a systematic problem with voltage unbalances. So neutral point control is essential. Therefore, the voltage unbalance problem of the three - phase inverter was confirmed to be controlled within 5V using the neutral point control algorithm in charge and discharge mode. In addition, total harmonic distortion was reduced in three phases (u phase, v phase, w phase) when neutral point control was performed in charging mode and also in three phases (u phase, v phase, w phase) in discharge mode. In this paper suggests a neutral point control algorithm to solve the voltage unbalance of a three-level T-type inverter, and shows the improvement of the performance of the proposed algorithm through experiment.

Input Current Harmonic Reduction of Inverer TIG Welder (인버터 TIG용접기의 전원전류 고조파 저감)

  • 김준호
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.560-563
    • /
    • 2000
  • In this paper we proposed AC/DC boost converter to improve input current harmonic reduction in TIG welder. The proposed harmonic reduction circuit with UC2854AN acting on constant switching frequency average current control has a three-loop control structure : the inner current loop the line voltage feed-forward loop and th outer voltage loop. Also we applied the constant current strategy on full bridge IGBT inverter to stabilized the output current using the analog PI controller. To demonstrate the practical significance of the proposed methods some simulation studies and experimental results are presented.

  • PDF

Adaptive Harmonic Control for DC Input Voltage Fluctuation of PWM Inverter (PWM인버터의 DC입력전달 맥동에 대한 고조파 적응제어)

  • 이윤종;임남혁
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.11
    • /
    • pp.896-904
    • /
    • 1989
  • PWM techniques which eliminate and reduce harmonics of output voltage in PWM Inverter driving System with fluctuating input volotage are described. First, harmonic factors are analyzed from harmonic equation of general PWM waveform and by examination of control possiblity of each factor, controllable factor is selected. Applying controllable factor to NPWM, PWM techniques using reference wave and carrier wave modulation are introduced. Actually, by the experiment applied with this strategy, the reduction of harmonics of output voltage is confirmed.

  • PDF

Novel Third Harmonic Current Injection Technique for Harmonic Reduction of Controlled Converters

  • Eltamaly, Ali M.
    • Journal of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.925-934
    • /
    • 2012
  • Three-phase controlled converters have many applications in the utility interfacing of renewable energy sources and adjustable speed drives as a rectifier or inverter. The utility line currents of these converters have a high harmonic distortion, which is more than the harmonic standards. This paper introduces a new technique for circulating the third harmonic currents from the dc-link to the line currents to reduce their harmonic contents. The proposed system uses a single-phase PWM converter to control the angle and amplitude of the injection current for each of the firing angle of a three-phase converter. A detailed analysis is introduced to achieve a relationship between the firing angle of the three-phase controlled converter and the power angle of the PWM converter. In addition, a detailed design for the other injection path components is introduced. A simulation and experimental work is introduced to prove the mathematical derivations. Analysis, simulation and experimental results prove the superiority of the proposed technique.