• 제목/요약/키워드: Harmful algal bloom species

검색결과 62건 처리시간 0.027초

The Comparison of Two Strains of Fibrocapsa japonica (Raphidophyceae) in New Zealand and Japan

  • Cho Eun Seob;Rhodes Lesley L.;Kim Hak Gyoon
    • Fisheries and Aquatic Sciences
    • /
    • 제2권1호
    • /
    • pp.58-65
    • /
    • 1999
  • Fibrocapsa japonica (Raphidophyceae) is regarded as a harmful algal bloom organism in Japanese waters, where it has been linked to fish kills. Fibrocapsa is a common species in New Zealand coastal waters, particularly in the Hauraki Gulf, where it has regularly bloomed in the spring under E1 Nino climate conditions for the past six years. The New Zealand isolate had 1.4 times more total polyunsaturated acids than the Japanese isolate under the same growth conditions, suggesting that eicosapentaenoic acid in particular coold be used as a discriminating chemotaxonomic marker. The molecular probes tested showed no differential binding of the raphidophytes to lectins, but oligonucleotide probes targeted F. japonica ribosomal RNA bound specifically to both isolates. Neither strain was toxic in mouse or neuroblastoma bioassays. There is no evidence that the New Zealand F. japonica isolates investigated to date produce ichthyotoxins.

  • PDF

Effect of phosphorus application on appearance of algal water bloom and rice yield in rice-barley double cropping system

  • Hwang, Jae-Bok;Bae, Hee-Soo;Park, Tae-Seon;Choi, In-Bae
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.233-233
    • /
    • 2017
  • Algal communities are important to maintain the aquatic ecosystems function. Algae have short life cycles, they respond quickly to environmental change and their diversity and density can indicate and the quality of their habitat. The bloom forms before the rice seedings have emerged, it may present a physical barrier that prevents the seedlings from penetrating the floodwater. Wind may also move the algal bloom, pushing the young plants beneath the surface. Another harmful action develops when the water dries up and the algae form a layer at the bottom of the field. The layer envelops the seedlings, which are not yet deeply rooted, and drag them to the surface when the water is let in again. Soil utilization pattern can be the mail facter affecting soil physico-chemical properties, especially in soil phosphorus (P). Solid content of the algae culture solution increased with the increase in the nitrogen rather the phosphors concentration. Phosphoric acid was treated with conventional treatments (100-0%, before transplanting time-tillering stage), 50-50%, 0-100%, and un-treated. The herbicide was treated on the 7 DAT (day after transplanting). Green algae samples were collected 20 DAT. Total phosphoric acid was the highest at 0.06 in 50-50% treatment in 20 DAT. The amount of green algae was about twice (9.8 mg/20ml) that of un-treated. Total number of green algae was 54 species(Green algae 35 species, Euglena 9 species, Stone wheel 10 species). Among the phosphoric acid treatment methods, the number of occurrences of green algae were the highest with 39 species in 0-100%, followed by 50-50%, 28 species, conventional treatments, 22 species, non-treatment, 18 species, respectively. Rice Yield was not significantly different by phosphoric treatment time, but slightly higher than un-treated. The maximal algal biomass was observed about 2weeks or 1 month after transplanting; the subsequent decrease of the biomass was related to the consumption by grazers and to a deficient light under the rice canopy. Maximal algal growth was observed just before tillering. To estimate the suitable method of phosphorus application in puddled-soil drill seeding of rice, available phosphorus appearance of algal water bloom, and rice yield were investigated in paddy soil of rice-barley double cropping system.

  • PDF

낙동강 중, 하류 및 덕동호의 시·공간적 남조류 군집 특성 (Spatio-temporal Characteristics of Cyanobacterial Communities in the Middle-downstream of Nakdong River and Lake Dukdong)

  • 박혜경;신라영;이혜진;이경락;천세억
    • 한국물환경학회지
    • /
    • 제31권3호
    • /
    • pp.286-294
    • /
    • 2015
  • Temporal and spatial characteristics of cyanobacterial communities at the monitoring stations for Harmful Algal Bloom Alert System (HABAS) in Nakdong River and Lake Dukdong were investigated for two years (2013 to 2014). A total of 30 cyanobacterial species from 14 genera were found at the survey stations. Microcystis sp. showed maximum cell density in the total cyanobacterial community in August, 2014 at ND-2 and in September, 2013 at ND-3 station. Lynbya limnetica and Geitlerinema sp., non-target species for alert criteria showed maximum cell density at ND-1 (August, 2013) and Dam station of Lake Dukdong (September, 2014), respectively. Total cyanobacterial cell density and the relative abundance of four target genera (Microcystis, Anabaena, Aphanizomenon and Oscillatoria spp.) for alert criteria was relatively lower in the mesotrophic Lake Dukdong than at the eutrophic riverine stations of Nakdong River, indicating cyanobacterial density and the RA of target genera is affected by the trophic state of the monitoring stations. Simulating the alert system using phycocyanin concentration as an alert criterion resulted in the longer period of alert issued compared to the period of alert issued using the current criterion of harmful cyanobacterial cell density due to the influence of phycocyanin concentration from non-target cyanobacterial species.

남해안 연안에서 적조생물, Cochlodinium polykikoides, Gyrodinium impudicum, Gymnodinium catenatum의 출현상황과 온도, 염분, 조도 및 영양염류에 따른 성장특성 (Abundance of Harmful Algae, Cochlodinium polykrikoides, Gyrodinium impudicum and Gymnodinium catenatum in the Coastal Area of South Sea of Korea and Their Effects of Temperature, Salinity, Irradiance and Nutrient on the Growth in Culture)

  • 이창규;김형철;이삼근;정창수;김학균;임월애
    • 한국수산과학회지
    • /
    • 제34권5호
    • /
    • pp.536-544
    • /
    • 2001
  • 적조생물 Cochlodinium polykrikoides, Gyrodinium impudicum, Gymnodinium catenatum은 독성을 지니거나, 적조를 일으킴으로써 수산피해 및 보건위생상의 문제를 야기시키는 종이다. 이 종들의 적조발생 환경과 기작을 이해하기 위해서는 종별 생태생리 (eco-physiology) 특성 등을 파악할 필요가 있다. 본 실험에서는 한국 남해안 연안에서 이들 3종의 출현상황과 성장특성을 파악하기 위해 이 해역에서 분리한 종을 대상으로 온도, 염분, 조도 및 영양염류에 따른 성장도를 조사하였다. 1999년도 남해안 남해도, 나로도, 완도 연안에서 이들 3종의 최초출현시기는 수온이 $22.8\sim26.5^{\circ}C$인 7월 중순에서 8월 중순으로써 서로 비슷한 시기에 동반 출현하였다. 유영세포의 소멸시기는 G. catenatum의 경우 8월 중, 하순이었고, C. polykrikoides와 G. impudicum은 수온이 $23^{\circ}C$ 이하로 하강하는 9월 하순이었다. 출현기간 중의 최대밀도는 C. polykrikoides의 경우 $40\times10^6$cells/L 이상으로써 고밀도 증식을 하였으나, G. impudicum과 C. catenatum은 각각 3,460ce11s/L 및 440ce11s/L로써 매우 낮은 밀도로 존재하였다. 배양실험에서 C. polykrikoides, G. impudicum, G. catenatum는 $22\sim28^{\circ}C$에서 양호한 성장을 보였고, 최적수온은 $25^{\circ}C$ 내외로 판단되었는데, 이러한 결과는 적조발생시의 수온과 대체로 일치하였다. 염분에 따른 성장률은 3종 모두 $30\sim35\%$에서 양호한 성장률을 보였다. 3종 중 G. impudicum은 비교적 광염성의 특징을 보였고, G. cstenatum은 $35\%$ 이상의 고염분에서 특히, 저조한 성장률을 보였다. 조도에 따른 성장은 C. polykrikoides와 G. impudicum의 경우 특히 7,5001ux 이상의 고조도에서 성장률이 현저히 높은 것으로 나타났다. 이러한 결과는 C. polykrikoides의 경우 조도가 높은 하계에 표층에서 강한 집적현상을 보이면서도 광저해현상을 밟지 않고 양호한 증식을 할 수 있는 특성과 관련이 있을 것으로 추정되었다. C. polykrikoides와 G. impudicum의 질산 및 암모니아 질소 농도에 따른 성장은 $40{\mu}M$까지는 농도가 높을수록 성장률도 증가하였으나 그 이상에서는 큰 차이를 보이지 않아, 두 종의 질소 임계농도는 $13.5\~40{\mu}M$로 판단되었다. 또한, 인산인은 $4.05{\mu}M$ 까지는 농도가 높을수록 성장률도 증가하였으나 그 이상에서는 큰 성장차를 보이지 않아, 두 종 모두 인산인의 임계농도는 $1.35\sim4.05{\mu}M$로 판단되었다. 한편, C. polyklikoides는 DIN과 DIP 농도가 각각 $1.2{\mu}M$$0.3{\mu}M$ 이하로 낮았던 나로도와 남해도 외측해역에서도 적조를 형성하였다. 이와 같이 낮은 영양염류 하에서 왕성하게 증식할 수 있었던 이유는 이 종의 경우 일간 수직이동을 통해 야간에 저층에서 풍부한 영양염류를 흡수할 수 있었기 때문으로 해석되었다.

  • PDF

Pre-ozonation for removal of algal organic matters (AOMs) and their disinfection by-products (DBPs) formation potential

  • Jing Wang;Se-Hyun Oh;Yunchul Cho
    • Membrane and Water Treatment
    • /
    • 제14권2호
    • /
    • pp.77-83
    • /
    • 2023
  • As a result of algal bloom, algal organic matters (AOMs) are rapidly increased in surface water. AOMs can act as precursors for the formation of harmful disinfection by-products (DBPs), which are serious problems in water treatment and human health. The main aim of this study is to characterize the formation of DBPs from AOMs produced by three different algae such as Oscillatoria sp., Anabaena sp., and Microcystis aeruginosa under different algal growth phases. In an effort to examine formation of DBPs during chlorination, chloroform (TCM), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) were determined under various CT (product of disinfectant concentration and contact time, mg·min/L) values. Generally, the amounts of DBPs tended to increase with increasing CT values at the most growth phases. However, there was a significant difference between the amounts of DBPs produced by the three algal species at different growth phases. This result is likely due to the chemical composition variability of AOM from different algae at different growth phases. In addition, the effect of pre-ozonation on coagulation for the removal of AOMs from three algal species was investigated. The pre-ozonation had a positive effect on the coagulation/flocculation of AOMs.

Five Alexandrium species lacking mixotrophic ability

  • Lim, An Suk;Jeong, Hae Jin;Ok, Jin Hee
    • ALGAE
    • /
    • 제34권4호
    • /
    • pp.289-301
    • /
    • 2019
  • Mixotrophy in marine organisms is an important aspect of ecology and evolution. The discovery of mixotrophic abilities in phototrophic dinoflagellates alters our understanding of the dynamics of red tides. In the phototrophic dinoflagellate genus Alexandrium, some species are mixotrophic, but others are exclusively autotrophic. There are differences in the ecological roles of autotrophic and mixotrophic Alexandrium in marine food webs. However, of the 34 known Alexandrium species, the mixotrophic ability of >20 species has yet to be explored. In this study, the mixotrophic capabilities of Alexandrium insuetum CCMP2082, Alexandrium mediterraneum CCMP3433, Alexandrium pacificum CCMP3434, Alexandrium tamutum ATSH1609, and Alexandrium margalefii CAWD10 were investigated by providing each species with 22 diverse prey items including bacterium-sized microbeads (1 ㎛), the cyanobacterium Synechococcus sp., algal prey species, and the ciliate Mesodinium rubrum. None of the 5 Alexandrium species fed on any of the prey items. These results increase the number of Alexandrium species lacking mixotrophic abilities to 9, compared to the 7 known mixotrophic Alexandrium species. Furthermore, the Alexandrium phylogenetic tree based on the large subunit ribosomal DNA contained 3 large clades, each of which had species with and without mixotrophic abilities. Thus, the acquisition or loss of mixotrophic abilities in Alexandrium might readily occur.

Lack of mixotrophy in three Karenia species and the prey spectrum of Karenia mikimotoi (Gymnodiniales, Dinophyceae)

  • Jin Hee Ok;Hae Jin Jeong;An Suk Lim;Hee Chang Kang;Ji Hyun You;Sang Ah Park;Se Hee Eom
    • ALGAE
    • /
    • 제38권1호
    • /
    • pp.39-55
    • /
    • 2023
  • Exploring mixotrophy of dinoflagellate species is critical to understanding red-tide dynamics and dinoflagellate evolution. Some species in the dinoflagellate genus Karenia have caused harmful algal blooms. Among 10 Karenia species, the mixotrophic ability of only two species, Karenia mikimotoi and Karenia brevis, has been investigated. These species have been revealed to be mixotrophic; however, the mixotrophy of the other species should be explored. Moreover, although K. mikimotoi was previously known to be mixotrophic, only a few potential prey species have been tested. We explored the mixotrophic ability of Karenia bicuneiformis, Karenia papilionacea, and Karenia selliformis and the prey spectrum of K. mikimotoi by incubating them with 16 potential prey species, including a cyanobacterium, diatom, prymnesiophyte, prasinophyte, raphidophyte, cryptophytes, and dinoflagellates. Cells of K. bicuneiformis, K. papilionacea, and K. selliformis did not feed on any tested potential prey species, indicating a lack of mixotrophy. The present study newly discovered that K. mikimotoi was able to feed on the common cryptophyte Teleaulax amphioxeia. The phylogenetic tree based on the large subunit ribosomal DNA showed that the mixotrophic species K. mikimotoi and K. brevis belonged to the same clade, but K. bicuneiformis, K. papilionacea, and K. selliformis were divided into different clades. Therefore, the presence or lack of a mixotrophic ability in this genus may be partially related to genetic characterizations. The results of this study suggest that Karenia species are not all mixotrophic, varying from the results of previous studies.

Toxic Algal Bloom Caused by Dinoflagellate Alexandrium tamarense in Chindong Bay, Korea

  • Yoo Jong Su;Fukuyo Yasuwo;Cheun Byeungsoo;Lee Sam Geun;Kim Hak Gyoon
    • Fisheries and Aquatic Sciences
    • /
    • 제3권1호
    • /
    • pp.26-32
    • /
    • 2000
  • Monospecific red tide by a toxic dinoflagellate belonging to the genus Alexandrium occurred at Chindong Bay in the southern coast of Korea and continued from April 6th to 15th in 1997. The ratio of its cell number to total phytoplankton cell number was much higher than $95\%$. This organism was identified as Alexandrium tamarense, although slight morphological differences were found comparing to the original and successive descriptions of the species. We found neither anterior nor posterior attachment pores in these cells of the bloom population. The occurrence of red tide caused by A. tamarense was first reported in Korea. Its plate formula is Po, Pc, 4', 6"c, 8s, 5"' and 2"". Thecal plates are thin with pore-like ornamentation. In those plates, the anterior part of the first apical plate (1') is narrower and its posterior end has sometimes a block-like accessory, but this variation was considered within the range of the morphological variability of this taxon. The cell density during the red tide exhibited a wide range of variation by the depth of water column, ranging from $2\times10^6$ cells$l^{-1}$ to $5\times10^6$ cells·$l^{-1}$. Water temperature varied from 11.8 to $12.3^{\circ}C$. Toxicity of A. tamarense during red tide was measured as $8.8\times10^5$. $MU\;\cdot\;cell^{-1}$ by mouse bioassay.

  • PDF

Cochlodinium Polykrikoides 최적 성장모형 (Optimal Growth Model of the Cochlodinium Polykrikoides)

  • 조홍연;조범준
    • 한국해안·해양공학회논문집
    • /
    • 제26권4호
    • /
    • pp.217-224
    • /
    • 2014
  • Cochlodinium polykrikoides 적조생물은 우리나라 연안에서 가장 빈번하게 적조를 유발하는 생물이다. 적조는 식물플랑크톤의 급격한 번식(algal bloom)으로 발생하기 때문에 적조를 유발하는 적조생물에 대한 최적의 성장조건 정보가 가용하다면 정확한 적조성장 모형 구성이 가능하며, 적조 발생예측에도 활용할 수 있다. 그러나 적조 성장에 영향을 미치는 인자가 빛, 수온, 염분, 영양염류 농도 등으로 다양하고, 적조성장을 제어하는 함수형태가 다양하기 때문에 실험조건의 최적 성장조건에 대한 연구 성과를 활용하여 적조 수치모형에서 활용할 수 있는 최적 성장모형을 구성한 연구는 매우 미흡한 수준이다. 본 연구에서는 우리나라의 대표적인 적조생물에 해당하는 Cochlodinium polykrikoides 적조생물의 최적 성장조건에 관한 연구 자료를 이용하여 다양한 함수형태에 따른 최적 매개변수 추정 및 오차비교 분석과정을 거쳐 적조 모형에서 바로 활용할 수 있는 최적 성장모형을 개발 제시하였다. 개발된 성장모형은 실험조건에서 추정된 최적 성장모형이기 때문에 현장자료를 이용한 모형의 보정 및 검정과정에서 본 연구결과로 제시된 최적 함수형태, 최적 매개변수 및 보정 매개변수의 범위 등을 기본 정보로 활용할 수 있으며, 실험조건과 현장조건의 차이 평가에도 활용할 수 있다.

Feeding by common heterotrophic protist predators on seven Prorocentrum species

  • You, Ji Hyun;Jeong, Hae Jin;Kang, Hee Chang;Ok, Jin Hee;Park, Sang Ah;Lim, An Suk
    • ALGAE
    • /
    • 제35권1호
    • /
    • pp.61-78
    • /
    • 2020
  • Species belonging to the dinoflagellate genus Prorocentrum are known to cause red tides or harmful algal blooms. To understand the dynamics of a Prorocentrum sp., its growth and mortality due to predation need to be assessed. However, there are only a few Prorocentrum spp. for which heterotrophic protist predators have been reported. We explored feeding by the common heterotrophic dinoflagellates Gyrodinium dominans, Oxyrrhis marina, Pfiesteria piscicida, Oblea rotunda, and Polykrikos kofoidii and the naked ciliate Strombidinopsis sp. (approx. 90 ㎛ cell length) on the planktonic species Prorocentrum triestinum, P. cordatum, P. donghaiense, P. rhathymum, and P. micans as well as the benthic species P. lima and P. hoffmannianum. All heterotrophic protists tested were able to feed on the planktonic prey species. However, O. marina and O. rotunda did not feed on P. lima and P. hoffmannianum, while G. dominans, P. kofoidii, and Strombidinopsis sp. did. The growth and ingestion rates of G. dominans and P. kofoidii on one of the seven Prorocentrum spp. were significantly different from those on other prey species. G. dominans showed the top three highest growth rates when it fed on P. triestinum, P. cordatum, and P. donghaiense, however, P. kofoidii had negative growth rates when fed on these three prey species. In contrast, P. kofoidii had a positive growth rate only when fed on P. hoffmannianum. This differential feeding on Prorocentrum spp. between G. dominans and P. kofoidii may provide different ecological niches and reduce competition between these two common heterotrophic protist predators.