• Title/Summary/Keyword: Hardware-In-the Loop simulation

Search Result 335, Processing Time 0.035 seconds

무인비행선 HILS 시스템 개발

  • Kim, Seong-Pil;Ahn, Iee-Ki;Kim, Eung-Tai
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.9-15
    • /
    • 2004
  • In this paper, a HILS(Hardware-In-the-Loop-Simulation) System designed for an unmanned airship, which is under development by KARI, is introduced. A HILS system is essential to validate flight control systems on the ground. The HILS system consists of several systems: a virtual ADT(airborne data terminal) system, a virtual payload system, a virtual airship system, and a status display system. Also, a 3-axis motion table and an inertial navigation sensor are included. The reliability of the flight control computer has been validated by HILS tests.

  • PDF

Development of A Lane Departure Monitoring and Control System

  • Huh Kunsoo;Hong Daegun;Stein Jeffrey L.
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.1998-2006
    • /
    • 2005
  • The lane departure avoidance systems have been considered promising to assist human drivers in AVCS (Advanced Vehicle Control System). In this paper, a lane departure monitoring and control system is developed and evaluated in the hardware-in-the-loop simulations. This system consists of lane sensing, lane departure monitoring and active steering control subsystems. The road image is obtained based on a vision sensor and the lane parameters are estimated using image processing and Kalman Filter technique. The active steering controller for avoiding the lane departure is designed based on the lane departure metric. The proposed lane departure avoidance system is realized in a steering HILS (hardware-in-the-loop simulation) tool and its performance is evaluated with a driver in the loop.

Direct-drive position controller design for the plant with bidirectional load (양방향 부하를 갖는 시스템의 직구동 위치제어기 설계)

  • 최동균;김정운;강치우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.588-593
    • /
    • 1987
  • In this study, direct-drive position controllers are designed and implemented for the flying vehicles actuating system with both positive and negative load factors, where the load factors are assumed proportional to the deflection angle of control surface. Its analog and digital controllers are verified through software simulation and hardware-in-the-loop simulation.

  • PDF

Performance Evaluation on an Active Camera Mount System for UAV via Hardware-in-the-loop-simulation (HILS를 통한 무인항공기 카메라 지지 능동 마운트 시스템의 진동제어 성능 평가)

  • Oh, Jong-Suk;Choi, Seung-Bok;Cho, Han-Jun;Lee, Chul-Hee;Cho, Myeong-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.8
    • /
    • pp.767-773
    • /
    • 2010
  • In the present work, vibration control performance of piezoactuator-based active mount system for unmanned aero vehicle(UAV) equipment is evaluated via hardware in the loop simulation(HILS). At first, the vibration level of UAV is measured and from this vibration data, the proper piezostack actuator is selected. Then, the dynamic model of active mount system including four active mounts and UAV camera equipment is derived. In order to evaluate vibration control performance, the HILS system is constructed. The proposed mount is prepared as hardware part and the other mounts are considered in software part. A sliding mode controller is designed and implemented to the HILS system. Effective vibration control results are presented in both time and frequency domains.

A Study on UAV Flight Control System HILS Test Environment (무인항공기 비행제어 HILS 시험환경 연구)

  • Byun, Jinku;Hur, Gi-Bong;Lee, KwangHyun;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.4
    • /
    • pp.316-323
    • /
    • 2016
  • A UAV(Unmanned Aerial Vehicle) flies along pre-programed navigation points(in-flight, take-off, or landing) automatically without pilot input. Even though UAVs fly differently from general piloted aircraft as the pilot controls the aircraft from a ground station through means of a data-link system. Occasionally, the data-link connection can be lost for any number of reasons, in which case, the FLCC(Flight control Computer) must automatically switch to autopilot to continue flying. Hence, the FLCC is a flight-critical component that must be throughly tested and validated. This paper discusses the development of a HILS(Hardware in the Loop Simulation) test environment designed to simulate real flight conditions to verify the FLCC satisfies flying quality requirements and maintains robustness despite any potential malfunctions or emergency situations.

Development of a Unified Research Platform for Plug-In Hybrid Electrical Vehicle Integration Analysis Utilizing the Power Hardware-in-the-Loop Concept

  • Edrington, Chris S.;Vodyakho, Oleg;Hacker, Brian A.
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.471-478
    • /
    • 2011
  • This paper addresses the establishment of a kVA-range plug-in hybrid electrical vehicle (PHEV) integration test platform and associated issues. Advancements in battery and power electronic technology, hybrid vehicles are becoming increasingly dependent on the electrical energy provided by the batteries. Minimal or no support by the internal combustion engine may result in the vehicle being occasionally unable to recharge the batteries during highly dynamic driving that occurs in urban areas. The inability to sustain its own energy source creates a situation where the vehicle must connect to the electrical grid in order to recharge its batteries. The effects of a large penetration of electric vehicles connected into the grid are still relatively unknown. This paper presents a novel methodology that will be utilized to study the effects of PHEV charging at the sub-transmission level. The proposed test platform utilizes the power hardware-in-the-loop (PHIL) concept in conjunction with high-fidelity PHEV energy system simulation models. The battery, in particular, is simulated utilizing a real-time digital simulator ($RTDS^{TM}$) which generates appropriate control commands to a power electronics-based voltage amplifier that interfaces via a LC-LC-type filter to a power grid. In addition, the PHEV impact is evaluated via another power electronic converter controlled through $dSPACE^{TM}$, a rapid control systems prototyping software.

Drowsy Driving Detection Algorithm Using a Steering Angle Sensor And State of the Vehicle (조향각센서와 차량상태를 이용한 졸음운전 판단 알고리즘)

  • Moon, Byoung-Joon;Yeon, Kyu-Bong;Lee, Sun-Geol;Hong, Seung-Pyo;Nam, Sang-Yep;Kim, Dong-Han
    • 전자공학회논문지 IE
    • /
    • v.49 no.2
    • /
    • pp.30-39
    • /
    • 2012
  • An effective drowsy driver detection system is needed, because the probability of accident is high for drowsy driving and its severity is high at the time of accident. However, the drowsy driver detection system that uses bio-signals or vision is difficult to be utilized due to high cost. Thus, this paper proposes a drowsy driver detection algorithm by using steering angle sensor, which is attached to the most of vehicles at no additional cost, and vehicle information such as brake switch, throttle position signal, and vehicle speed. The proposed algorithm is based on jerk criterion, which is one of drowsy driver's steering patterns. In this paper, threshold value of each variable is presented and the proposed algorithm is evaluated by using acquired vehicle data from hardware in the loop simulation (HILS) through CAN communication and MATLAB program.

Development of HIL simulator for performance validation of stack inlet gases temperature controller of marine solid oxide fuel cell system (선박용 고체산화물형 연료전지 시스템의 스택 공급 가스 온도 제어기 성능 검증을 위한 HIL 시뮬레이터 개발)

  • Ahn, Jong-Woo;Park, Sang-Kyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.582-588
    • /
    • 2013
  • Solid Oxide Fuel Cell (SOFC) has been focused as a promising power source, which can replace a diesel engine regarding as major source of air pollution by the ship, due to high efficiency and eco-friendly. High operating temperature of SOFC is enable to secure of high efficiency, use various fuels and no need of high priced catalyst, but it may damage to components of SOFC. Therefore temperature control system has to be designed and validated before employing the fuel cell system for securing high efficiency and reliability. In this paper, instead of using typical method to validate performance of the controller, which consumes high cost and time, performance validation system using Hardware-in-the-loop simulation was developed and validated performence of the designed temperature controller for SOFC system.