• Title/Summary/Keyword: Hardware in the loop simulation

Search Result 333, Processing Time 0.019 seconds

Comparative Analysis of Current Controls for Boost PFC Converter under Light Load

  • Juil Kim;Yeong-Jun Choi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.6
    • /
    • pp.143-151
    • /
    • 2024
  • In this paper, the inductor current distortion in a boost PFC (Power Factor Correction) converter under light load is mathematically analyzed, and its reasons are defined. In the average current mode control under light load, the inductor current is discontinuous, resulting in an inaccurate inductor current average value being reflected in the current control. In predictive current mode control, the current ripple is relatively large compared to the inductor current, leading to severe current distortion. In addition, the switch is turned off near the peak of the inductor current when model predictive current control is applied. Inductor current distortion must be addressed because it leads to an increase in total harmonic distortion and a decrease in power factor. In this paper, the design procedure to mitigate the light load current distortion in boost PFC converter is selected based on the mathematical analysis. Finally, a comparative analysis of control methods under light load is performed using hardware-in-the-loop simulation.

Development of a Lane Departure Avoidance System using Vision Sensor and Active Steering Control (비전 센서 및 능동 조향 제어를 이용한 차선 이탈 방지 시스템 개발)

  • 허건수;박범찬;홍대건
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.222-228
    • /
    • 2003
  • Lane departure avoidance system is one of the key technologies for the future active-safety passenger cars. The lane departure avoidance system is composed of two subsystems; lane sensing algorithm and active-steering controller. In this paper, the road image is obtained by vision sensor and the lane parameters are estimated using image processing and Kalman Filter technique. The active-steering controller is designed to prevent the lane departure. The developed active-steering controller can be realized by steer-by-wire actuator. The lane-sensing algorithm and active-steering controller are implemented into the steering HILS(Hardware-In-the-Loop Simulation) and their performance is evaluated with a human driver in the loop.

Adaptive Fault-tolerant Multistage Interconnection Network (적응적 결함-허용 다단계 상호연결망)

  • 김금호;김영만;배은호;윤성대
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.199-202
    • /
    • 2001
  • In this paper, we proposed and analyzed a new class of irregular fault-tolerant multistage interconnection network named as Extended-QT(Quad Tree) network. E-QT network is extended QT network. A unique path MIN usually is low hardware complexity and control algorithm. So we proposes a class of multipath MIN which are obtained by adding self-loop auxiliary links at the a1l stages in QT(Quad Tree) networks so that they can provide more paths between each source-destination pair. The routing of proposed structure is adaptived and is based by a routing tag. Starting with the routing tag for the minimum path between a given source-destination pair, routing algorithm uses a set of rules to select switches and modify routing tag. Trying the self-loop auxiliary link when both of the output links are unavailable. If the trying is failure, the packet discard. In simulation, an index of performance called reliability and cost are introduced to compare different kinds of MINs. As a result, the prouosed MINs have better capacity than 07 networks.

  • PDF

Real-time Anomaly Detection System Using HITL Simulation-Based UAV Packet Data (HITL 시뮬레이션 기반 무인비행체 패킷 데이터를 활용한 실시간 이상 탐지 시스템)

  • Daekyeong Park;Byeongjin Kim
    • Convergence Security Journal
    • /
    • v.23 no.2
    • /
    • pp.103-113
    • /
    • 2023
  • In recent years, Unmanned Aerial Vehicles (UAV) have been widely used in various industries. However, as the depend ence on UAV increases rapidly, concerns about the security and safety of UAV are growing. Currently, various vulnerabili ties such as stealing the control right of the UAV or the right to communicate with the UAV in the web application are being disclosed. However, there is a lack of research related to the security of UAV. Therefore, in this paper, a study was conducted to determine whether the packet data was normal or abnormal by collecting packet data of an unmanned aerial vehicle in a HITL(Hardware In The Loop) simulation environment similar to the real environment. In addition, this paper proposes a method for reducing computational cost in the modeling process and increasing the ease of data interpretation, a machine learning-based anomaly detection model that detects abnormal data by learning only normal data, and optimized hyperparameter values.

Development of the Integrated Power Converter for the Environmentally Friendly Vehicle and Validation of the LDC using Battery HILS (친환경 자동차용 통합형 전력변환장치의 개발 및 배터리 HILS를 이용한 LDC 검증에 관한 연구)

  • Kim, Tae-Hoon;Song, Hyun-Sik;Lee, Baek-Haeng;Lee, Chan-Song;Kwon, Cheol-Soon;Jung, Do-Yang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1212-1218
    • /
    • 2014
  • For OBC (On-Board Charger) and LDC (Low DC-DC Converter) used as essential power conversion systems of PHEV (Plug-in Hybrid Electric Vehicle), system performance is required as well as reliability, which is need to protect the vehicle and driver from various faults. While current development processor is sufficient for embodying functions and verifying performance in normal state during development of prototypes for OBC and LDC, there is no clear method of verification for various fault situations that occur in abnormal state and for securing stability of vehicle base, unless verification is performed by mounting on an actual vehicle. In this paper, a CCM (Charger Converter Module) was developed as an integrated structure of OBC and LDC. In addition, diverse fault situations that can occur in vehicles are simulated by a simulator to artificially inject into power conversion system and to test whether it operates properly. Also, HILS (Hardware-in-the-Loop Simulation) is carried out to verify whether LDC is operated properly under power environment of an actual vehicle.

A Study on HILS for Performance Analysis of Airborne EOTS for Aircraft (항공기용 EOTS 성능분석을 위한 HILS시스템 구축에 관한 연구)

  • Chun, Seungwoo;Baek, Woonhyuk;La, Jongpil
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.12
    • /
    • pp.55-64
    • /
    • 2013
  • In this paper, the HILS (Hardware In-the-Loop Simulation) system to analyze and to verify the performance of the targeting pod is addressed. The main functions of the targeting pod is acquiring and tracking targets to guide a LGB (Laser Guided Bomb) to the targets. For the analysis of targeting pod, the real time simulate images generation of IR and daylight cameras, sever control technology, and the analysis of laser transfer characteristics are necessary. For the real time image generation and the laser transfer characteristics analysis, off-the-shelf SDK(Software Development Kit) OKTAL-SE is used. For the servo controller, well-proven mechanism in the previous program is applied to increase servo control accuracy. To analyze the performance of a targeting pod in a realistic environment, 1553B, ARINK818 interface and etc. which are actually implemented in real combat aircrafts are applied in the system. By using the developed HILS system, the performance of currently operating targeting pods in real combat aircrafts can be analyzed and predicted. Additionally, the relationship between overall system performance and each module performance can be analyzed, the currently developed HILS system is expected to be a very useful tool to generate system development requirements of targeting pods and to reduce any possible future development risks.

Dynamic Model of PEM Fuel Cell Using Real-time Simulation Techniques

  • Jung, Jee-Hoon;Ahmed, Shehab
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.739-748
    • /
    • 2010
  • The increased integration of fuel cells with power electronics, critical loads, and control systems has prompted recent interest in accurate electrical terminal models of the polymer electrolyte membrane (PEM) fuel cell. Advancement in computing technologies, particularly parallel computation techniques and various real-time simulation tools have allowed the prototyping of novel apparatus to be investigated in a virtual system under a wide range of realistic conditions repeatedly, safely, and economically. This paper builds upon both advancements and provides a means of optimized model construction boosting computation speeds for a fuel cell model on a real-time simulator which can be used in a power hardware-in-the-loop (PHIL) application. Significant improvement in computation time has been achieved. The effectiveness of the proposed model developed on Opal RT's RT-Lab Matlab/Simulink based real-time engineering simulator is verified using experimental results from a Ballard Nexa fuel cell system.

Development of Robust Algorithm to Eliminate Low Frequency Current Ripples in Fuel Cell Generation System (동적변화에 강인한 연료전지 발전시스템의 저주파 리플전류 제거 알고리즘 개발)

  • Kim, Jong-Soo;Kang, Hyun-Soo;Choe, Gyu-Yeong;Lee, Byoung-Kuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1720-1727
    • /
    • 2009
  • This paper presents that generation and propagation mechanism of low frequency current ripples generated by a rectification effect of an inverter in fuel cell generation system is analyzed. The ripple reduction methode using hardware components such as capacitors and inductors is examined to reduce low frequency current ripples. A new fast and robust low frequency current ripple elimination algorithm is then proposed to incorporate a single loop current controller, which directly controls fuel cell current, without any extra hardware. The proposed algorithm can completely eliminate this current ripple as well as an overshoot or undershoot is significantly reduced. And the de link voltage and output current are well regulated by inverter controller. The validity of proposed algorithm is verified both computer simulation using PSIM 6.0 and experiment with a 1kW laboratory prototype.

Development of Real-Time Simulator for a Heavy Duty Diesel Engine (건설기계 디젤엔진용 실시간 시뮬레이터 개발)

  • Noh, Young Chang;Park, Kyung Min;Oh, Byoung Gul;Ko, Min Seok;Kim, Nag In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.2
    • /
    • pp.203-209
    • /
    • 2015
  • Recently, the portion of electronic control in an engine system has been increasing with the aim of meeting the requirements of emissions and fuel efficiency of the engine system in the construction machinery industry. Correspondingly, the complexity of the engine management system (EMS) has increased. This study developed an engine HiLS system for reducing the cost and time required for function development for the EMS. The engine model for HiLS is composed of air, fuel, torque, and dynamometer models. Further, the mean value method is applied to the developed HiLS engine model. This model is validated by its application to a heavy-duty diesel engine equipped with an exhaust gas recirculation system and a turbocharger. Test results demonstrate that the model has accuracy greater than 90 and also verify the feasibility of the virtual calibration process.

Development of Engine ECU_ILS System for Diesel Engine of Commercial Vehicle (상용차용 디젤엔진의 Engine ECU_ILS 시스템 개발)

  • Ko, Youngjin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.35-43
    • /
    • 2014
  • The automobile industry requires technological innovations to reduce fuel consumption with the public interest in environmental conservation in recent years. Thus, the hybrid system is applied not only to passenger cars but also commercial vehicles. The purpose of this paper is to develop engine ECU_ILS to develop commercial hybrid vehicles. In order to develop the engine and vehicle, the dynamometer and exhaust gas analyzer is needed. However, a lot of time and cost are required. In contrast, the model-based development environment that can be applied to a variety of test conditions can reduce development time. Therefore, a HILS system environment that can consider the behavior of actual vehicles for evaluation of the control logic, fuel consumption and exhaust gas is required. This engine ECU_ILS system was developed in this study, can analyze parameter such as the fuel injection rate, fuel injection time, fuel consumption and exhaust gas like the actual vehicle test using map data. Also, this system is expected to be able to analyze the characteristic of vehicle behavior and the development of peripheral device in relation to engine and vehicles. This HILS system can be used to develop control strategies of commercial hybrid vehicle systems in the future.