• Title/Summary/Keyword: Hardness variation

Search Result 371, Processing Time 0.023 seconds

DLC Structure Layer for Piezoelectric MEMS Switch (압전 MEMS 스위치 구현을 위한 DLC 구조층에 관한 연구)

  • Hwang, Hyun-Suk;Lee, Kyong-Gun;Yu, Young-Sik;Lim, Yun-Sik;Song, Woo-Chang
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.1
    • /
    • pp.28-31
    • /
    • 2011
  • In this paper, a new set of structural and sacrificial material that is diamond like carbon (DLC)/photoresist for high performance piezoelectric RF-MEMS switches which are actuated in d33 mode is suggested. To avoid curing problem of photoresist sacrificial layer, DLC structure layer is deposited at room temperature by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) method. And lead zirconate titanate (PZT) piezoelectric layer is deposited on structure layer directly at room temperature by rf magnetron sputtering system and crystallized by rapid thermal annealing (RTA) equipment. Particular attention is paid to the annealing of PZT film in order to crystallize into perovskite and the variation of mechanical properties of DLC layer as a function of annealing temperature. The DLC layer shows good performance for structure layer in aspect to Young's modulus and hardness. The fabrication becomes much simpler and cheaper with use of a photoresist.

Variation of Axial Tension-Compression Fatigue Characteristics by UNSM on Ti-6Al-4V (Ti-6Al-4V재의 UNSM처리에 의한 축인장압축피로특성변화)

  • Suh, Chang-Min;Cho, Sung-Am;Pyoun, Young-Sik;Suh, Min-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.42-48
    • /
    • 2011
  • The present study makes three original contributions to nanoskinned Ti-6Al-4V materials. The nanoskins were fabricated on Ti-6Al-4V material using various surface treatments: deep rolling (DR), laser shot peening (LSP), and ultrasonic nanocrystal surface modification (UNSM). These surface treatments are newly developed techniques and are becoming more popular in industrial fields. A fatigue strength comparison at up to 106 cycles was conducted on these nanoskinned Ti-6Al-4V materials. Fatigue tests were carried out using MTS under axial loading tension-compression fatigue (R = -1, RT, 5 Hz, sinusoidal wave). The analysis of the crack initiation patterns in the nanoskinned Ti-6Al-4V materials found an interior originating crack pattern and surface originating crack type. Microscopic observation was mainly used to investigate the fatigue fractured sites. These surface modification techniques have been widely adopted, primarily because of the robust grade of their mechanical properties. These are mainly the result of the formation of a large-scale, deep, and useful compressive residual stress, the formation of nanocrystals by the severe plastic deformation (SPD) at the subsurface layer, and the increase in surface hardness.

Growth Characteristics of Creeping bentgrass Cultivars (크리핑 벤트그래스 품종의 생육 특성)

  • 이혜원;정대영;심상렬
    • Asian Journal of Turfgrass Science
    • /
    • v.17 no.2_3
    • /
    • pp.87-97
    • /
    • 2003
  • The growth characteristics of creeping bentgrass seeded in the seaside landfill golf course are as follows. 1. As a result of analysis on the chemical characteristics of soil mixture used for turfgrass ground in this experiment, soil pH was 7.9, which is somewhat higher than the creeping bentgrass reference value of pH 5.5∼6.5; T-N(%) was 0.02, which is proper for the reference value, and trace element too lacked. 2. The cultivar with the fastest water infiltration was Seaside II recorded as 226.2cm/sec, while that with the slowest water infiltration was Pennlinks recorded as 141.1 cm/hr which was too faster than the USGA water infiltration reference value of 15∼30cm/hr. For the surface hardness of turfgrass ground with different cultivars, no statistically significant variation was found between the Penncross grass and the Pennlinks recorded as 18.6mm and 19.1 mm, respectively. The soil penetration was the highest in Pennlinks recorded as 7.6kg/$\textrm{cm}^2$ and lowest in Penn A-1 as 6.1kg/$\textrm{cm}^2$. 3. As a result of evaluation on visual quality at the early stage of growth, Penncross showed the most excellent visual quality compared to the others. However, Penn A-1 showed the most excellent visual quality at a late stage of growth around Sep. 17, 2003, and it was also excellent in the evaluation of visual color. Seaside II showed higher density around the root and the longest root length and was highly resistant to salt compared to others, but the initial sprouting rate was not satisfied, and the visual quality in the summer season was inferior to others. 4. As a result of measurement of the traffic injury, Penncross showed the most tolerant to the traffic stress and Pennlinks showed the most susceptible.

Effects of Chain Extender and Inorganic Filler on the Properties of Semi-Rigid Polyurethane Foams (반경질 폴리우레탄 발포체의 물성에 대한 사슬 연장제와 무기 충전제의 영향)

  • Cha, Gook-Chan;Song, Jeom-Sik;Lee, Suk-Min;Mun, Mu-Seong
    • Polymer(Korea)
    • /
    • v.34 no.1
    • /
    • pp.8-13
    • /
    • 2010
  • The physical properties of polymeric foams depend on the density of foams, physical properties of base polymers, the content of open cells, and cell structures including the size and its distribution, the shape of cell, and the thickness of skin layer. The foam density is affected by the chemistry of raw materials, the concentration of crosslinking agent and the blowing agent as well as the operating parameters during production process. In this study, the basic formulations of foams are composed of polyester polyol, MDI, amine catalyst, tin catalyst, silicone surfactant, and water. Cross-linking density of polyurethane was increased by using chain extenders. Also, the mechanical properties of polyurethane foam were improved by using the inorganic fillers (silica 1,2 and talc 1,2) having different $SiO_2$ contents and particle sizes. We investigated the properties of modulus, tensile strength, compressive strength and hardness of foams obtained by changing kind of inorganic filler and chain extender, and observed the distribution of inorganic filler as well as variation of cell size within the foams by electron microscopy.

A Study on Laser Assisted Machining for Silicon Nitride Ceramics (III) - Variation of the Main Cutting Force and Life of Cutting Tool by LAM of SSN and HIPSN - (질화규소 세라믹의 레이저 예열선삭에 관한 연구 (III) - SSN 및 HIPSN의 예열선삭시 절삭력 및 공구수명의 특성 -)

  • Kim, Jong-Do;Lee, Su-Jin;Kang, Tae-Young;Suh, Jeong;Lee, Jae-Hoon
    • Journal of Welding and Joining
    • /
    • v.28 no.6
    • /
    • pp.35-39
    • /
    • 2010
  • Generally, ceramic material is very difficult to machine due to high strength and hardness. However, ceramic material can be machined at high temperature by plastic flow as metallic material due to the deterioration of the grain boundary glassy phase. Recently, a new method was developed to execute cutting process with CBN cutting tool by local heating of surface with laser. There are various parameters in LAM because it is a complex process with laser treatment and machining. During laser assisted machining, high power results in reducing of cutting force and increasing tool life, but excessive power brings oxidation of the surface. The effect of laser power, feed rate, cutting depth and etc. were investigated on the life of cutting tool. Chips were observed to find out suitable machining conditions. Chips of SSN had more flow-types than HIPSN. It means SSN is easier to machining. The life of cutting tool was increased with increasing laser power and decreasing feed rate and cutting depth.

Evaluations of Hydrogen Embrittlement Behaviours on Dissimilar Welding Part of SDS Bottles (II) (삼중수소 저장용기 이종용접부의 수소취화 거동 평가 (II))

  • Cho, Kyoungwon;Choi, Jaeha;Jang, Minhyuk;Lee, Youngsang;Hong, Taewhan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.2
    • /
    • pp.120-126
    • /
    • 2015
  • Recently, the ever-increasing use of fossil fuels for rapid industrial development and population significantly caused an environment pollution and global warming such as climate change. So research and development of sustainable and eco-friendly energy have been performed. Especially the interest in nuclear fusion fuel was significantly increased from the developed countries. The system of fusion energy production was tritium separation, storage and delivery, and purification. Republic of Korea is in charge of Storage and Delivery System (SDS) in the International Thermonuclear Experimental Reactor (ITER). Welding part of the SDS bottles for storing the tritium is known to be susceptible to hydrogen embrittlement. In this study, conducted a study for the relaxation of the stability and hydrogen embrittlement of the weld area. The hydrogen heat treatment was processed through the Pressure-Composition-Temperature (PCT) device according to the time variation. Also mechanical properties such as impact test and hardness test according to using the alkaline cleaning liquid for hydrogen embrittlement relief and the fracture was observed by scanning electron microscopy (SEM) after the mechanical properties evaluation.

A Study on the Microstructural, Thermal and Mechanical Properties of Silicon Nitride Ceramic

  • Kim, Jong-Do;Lee, Su-Jin;Lee, Jae-Hoon;Sano, Yuji
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.7
    • /
    • pp.1026-1033
    • /
    • 2009
  • Fine ceramics have high strength, excellent wear resistance, chemical stability and high strength at high temperature and are receiving attention in various fields such as construction, engineering, aerospace and marine science. Finish machining process is required to obtain precise ceramics components because sintering process necessary for obtaining high strength and high quality ceramics reduces the dimensions of components and precision of shape. But high strength and brittleness of ceramics materials cause difficulty in processing. So a process for obtaining wanted dimensions is studying using high temperature which makes ceramics softened and thermal affected recently. Laser beam is a very useful optical device for these kinds of processes. Laser process such as laser cutting, laser machining, laser heat treatment and laser-assisted machining(LAM) is researching to manufacture practical ceramics components using intense laser source which can cause local softening and damage of workpiece. In this paper, microstructural and mechanical properties of silicon nitride heated are studied as a basic study for researching of ceramics process by laser beam. The surface variation of HIP and SSN-silicon nitride was analyzed with SEM and EDS. A processing at $1,300^{\circ}C$ or above causes N element to combine into $N_2$ gas and the gas busts from surface. These phenomena make bloat, craters and heat defects on the surface of silicon nitride. Also, oxygen content is largely increased to oxidize the surface and it causes changing of phases and reducing of hardness of surface.

Study on the Wear Resistant Characteristics of Medium Carbon Alloy Steel Plasma-Nitrided (플라즈마 질화처리된 중탄소합금강의 내마모특성에 관한 연구)

  • Cho, H.S.;Roh, Y.S.;Shin, H.K.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.5 no.4
    • /
    • pp.215-223
    • /
    • 1992
  • This study has been performed to investigate into some effects of temperature, gas mixing ratio and time on the optical microstructure, hardness and wear characteristics of medium carbon alloy steel treated by plasma nitriding. The results obtained from the experiment are summarized as follows: (1) Optical micrographs of AISI 4140 steel plasma-nitrided by the double stage technique have revealed that the nitrided layer is composed of the compound layer and the diffusion layer. The variation in temperature at the first stage gives effects, on the formation of compound layer and the growth rate is shown to be relatively fast at $460^{\circ}C$. (2) The thickness of compound layer has been found to increase with increasing nitrogen percentage in the gas mixture and the holding time. It is therefore recommended that a shorter holding time and a lower nitrogen percentage are more effective to produce a tougher compound layer and a diffusion layer only. (3) X-ray diffraction analysis for AISI 4140 steel has shown that the compound layer consist of ${\gamma}^{\prime}-Fe_4N$ and ${\alpha}-Fe$ and that tough compound layer diffustion layer only can be obtained by the double stage plasmanitriding process. (4) There is also a tendency that the total hardened layer depth increases with increasing temperature, time and nitrogen percentage in the first stage during the double stage plasma nitriding. (5) The wear resistance of plasma nitrided specimens has been found thobe considerably increased compared to the untreated specimens and the amount of increment has appeared to increase further with increasing nitriding temperature, holding time and notrogen percentage of gas mixture in the first stage treatment.

  • PDF

Spherical Indentation Testing to Evaluate Mechanical Properties in 1Cr-1Mo-0.25V Steel (구형압입시험에 의한 1Cr-1Mo-O.25V강의 기계적 물성 평가)

  • Lee, Jong-Min;Lee, Seung-Seok;Lee, Ouk-Sub;Nam, Young-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.5
    • /
    • pp.516-522
    • /
    • 2002
  • For the experimental study of rotor steel, seven kind of specimens with different degradation levels were prepared by isothermal heat treatment at $630^{\circ}C$. Spherical indentation technique was developed to evaluate the flow properties of metallic materials in carbon steel, stainless steel, and alloys, etc. Through the spherical indentation test, differently degraded 1Cr-1Mo-0.25V steel's mechanical properties were observed and compared with conventional standard test data. The flow properties of 1Cr-1Mo-0.25V steel's were estimated by analyzing the indentation load-depth curve. To characterize the flow property, we used material yield slope and constraint factor index rather than strain-hardening exponent because the variation of strain-hardening exponent was very little and the data showed irregularly. And the constraint factor's effect was small when the material yield slope was taken into account.

Warpage Improvement of PCB with Material Properties Variation of Core (코어 물성 변화에 따른 인쇄회로기판의 warpage 개선)

  • Yoon Il-Soung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.2 s.39
    • /
    • pp.1-7
    • /
    • 2006
  • In this paper, warpage magnitude and shape of printed-circuit board in case that properties of core and thickness of solder resist are varied are investigated. The cause of warpage is coefficient of thermal expansion differences of stacked materials. Therefore, we need small difference of coefficient of thermal expansion that laminated material, and need to decrease asymmetric of top side and bottom side in structure shape. Also, we can control occurrence of warpage heightening hardness of core in laminated material. Composite material that make core are exploited in connection with the structural bending twisting coupling resulting from directional properties of fiber reinforced composite materials and from ply stacking sequence. If we use such characteristic, we can control warpage with change of material properties. In this paper, warpage of two layer stacked chip scale package is investigated, and evaluate improvement result using an experiment and finite element method tool.

  • PDF