• Title/Summary/Keyword: Hardness of base steel

Search Result 162, Processing Time 0.03 seconds

Effect of Hot-stamping Heat Treatment on Microstructure and Hardness in TWB Laser Joints of Al-Si-coated Boron Steel and Zn-coated DP Steel (Al-Si 도금된 보론강과 Zn 도금된 DP강의 TWB 레이저 용접부 미세조직과 경도에 미치는 핫 스탬핑 열처리의 영향)

  • Jung, Byung-Hun;Kong, Jong-Pan;Kang, Chung-Yun
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.3
    • /
    • pp.224-232
    • /
    • 2012
  • In this study, the effect of hot-stamping heat treatment on the microstructure and hardness of TWB(Tailor Welded Blank) laser joints in Al-Si-coated boron steel and Zn-coated DP(Dual Phase)590 steel was investigated. In the TWB joints without heat treatment, hardness profiles showed local hardness deviation near the fusion zone. However, there was no hardness deviation in the heat treated specimen and its hardness was higher than that of the one without the heat treatment, due to a fully martensite microstructure. In the TWB joints of both the boron and DP steels, the maximum hardnesses were observed at the HAZ(Heat Affected Zone) near the base metal, and the hardness decreased gradually to the base metal. In the heat treated joints, the hardnesses of the HAZ and the base metal of the boron steel side were similar to the maximum hardness of the weld, while those of the HAZ and the base metal of the DP steel side were higher than the maximum hardness.

Hardness Distribution and Microstructures of Electric Resistance Spot Welded 1GPa Grade Dual Phase Steel (1GPa급 DP강 전기저항점용접부의 경도분포와 미세조직의 상관관계)

  • Na, Hye-Sung;Kong, Jong-Pan;Han, Tae-Kyo;Chin, Kwang-Geun;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.30 no.2
    • /
    • pp.76-80
    • /
    • 2012
  • In this study, the effect of the welding current on the hardness characteristics and microstructure in the resistance spot welding of 1GPa grade cold-rolled DP steel was investigated, Also, correlation between the hardness and microstructure was discussed. In spite of the change in the welding current, the hardness distributions near weld was similar. the hardness in the HAZ and the fusion zone was higher than that of the base metal and the hardness in the fusion zone was variated with the location. Especially, the hardness of HAZ adjacent to the base metal showed maximum value, and softening zone in the base metal adjacent to HAZ was found. With the increasing of welding current, there were no difference in maximum hardness and average hardness in the fusion zone were, but the hardness of the softening zone reduced. The difference in the hardness in each location of weld due to grain size of prior austenite. The softening of the base metal occurred by tempering of the martensite.

강의 마찰용접에 미치는 탄소당량의 영향

  • 나석주;양영수
    • Journal of Welding and Joining
    • /
    • v.4 no.3
    • /
    • pp.32-42
    • /
    • 1986
  • In this study, the influence of carbon equivalents on friction welds of dissimilar steels was investigated. Four types of carbon steels with 10mm diameter were welded to a high-speed tool steel SKH 9. Main experimental results could be summarized as follows (1) Under constant friction pressure, the friction time increased almost linearly with the increasing burn-off length, while the forge length decreased almost linearly. (2) The maximum hardness in carbon steels increased almost linearly with the increasing carbon equivalent, but was much lower than that in the high speed steel. (3) After quenching and tempering of dissimilar steel friction welds, the hardness in carbon steel weldments became similar as that in the base metal, while the hardness in SKH 9 weld was still higher that of the base metal. (4) Relative movement in the friction phae occurred not at the interface of the weldments, but in the high speed steed steel near the interface. (5) For considered material combinations and welding parameters, most of fractures in tension and twisting tests occurred in the base metal. And welds with so high strength could produced in a wide range of welding parameters.

  • PDF

Effects of hardness values on the creep rupture strength in a Mod. 9Cr1Mo Steel (Mod. 9Cr1Mo 강의 크리프 강도에 미치는 경도의 영향)

  • Lee, Yeon-Su;Yu, Seok-Hyeon;Gong, Byeong-Uk;Kim, Jeong-Tae
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.637-642
    • /
    • 2003
  • The Modified 9Cr-1Mo steel identified as T91, P91 and F91 in the ASME specification has been widely used for the construction of modern power plants. The available data on the influence of process parameters during manufacturing and fabrication on its properties are not sufficient. In this study, the influence of various thermal cycles on the hardness and the creep rupture strength was analyzed in the base metal and the weldments made in tube and pipe of a Mod.9Cr-1Mo steel. The low hardness, 155Hv, showed low creep rupture strength below the allowable stresses of T91 base metal in the ASME specification. This low value was attributed to the fully recovered dislocation structure and the weakening of precipitation hardening associated with the abnormal thermal cycles.

  • PDF

The Effect on the Strength According to Carbon Content of Kovar Steel (코바강의 탄소첨가량에 따른 강도에 미치는 영향)

  • Choi, Byung-Hui;Choi, Byung-Ky
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.28-33
    • /
    • 2010
  • Ni alloy steel is able to use during long time because of good acid and corrosion resistance. So, it's research has focused on developing the alternative alloy which is economically feasible. Recently, consumption of Kovar steel is gradually increased in field of the jet engine and the gas turbine because of its low thermal expansive characteristics. The specimens of Kovar steel(29%Ni-17%Co) contain 0.00%C, 0.03%C, 0.06%C, 0.10%C and 0.20%C, respectively. Ingots are manufactured by VIM(vacuum induction melting furnace) and then specimens are made by automatic hot rolling after heat treatment. Strength of Kovar steel according to carbon contents is estimated by hardness, tensile and impact test. Hardness of the 0.20%C specimen is more improved approximately 14.4% than one of base metal. Its strength increases 32.4% of a base metal, and its impact energy is also enhance 11.5%.

Microstructural Characterization of Clad Interface in Welds of Ni-Cr-Mo High Strength Low Alloy Steel (Ni-Cr-Mo계 고강도 저합금강 용접클래드 계면의 미세조직 특성 평가)

  • Kim, Hong-Eun;Lee, Ki-Hyoung;Kim, Min-Chul;Lee, Ho-Jin;Kim, Keong-Ho;Lee, Chang-Hee
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.628-634
    • /
    • 2011
  • SA508 Gr.4N Ni-Cr-Mo low alloy steel, in which Ni and Cr contents are higher than in commercial SA508 Gr.3 Mn-Mo-Ni low alloy steels, may be a candidate reactor pressure vessel (RPV) material with higher strength and toughness from its tempered martensitic microstructure. The inner surface of the RPV is weld-cladded with stainless steels to prevent corrosion. The goal of this study is to evaluate the microstructural properties of the clad interface between Ni-Cr-Mo low alloy steel and stainless weldment, and the effects of post weld heat treatment (PWHT) on the properties. The properties of the clad interface were compared with those of commercial Mn-Mo-Ni low alloy steel. Multi-layer welding of model alloys with ER308L and ER309L stainless steel by the SAW method was performed, and then PWHT was conducted at $610^{\circ}C$ for 30 h. The microstructural changes of the clad interface were analyzed using OM, SEM and TEM, and micro-Vickers hardness tests were performed. Before PWHT, the heat affected zone (HAZ) showed higher hardness than base and weld metals due to formation of martensite after welding in both steels. In addition, the hardness of the HAZ in Ni-Cr-Mo low alloy steel was higher than that in Mn-Mo-Ni low alloy steel due to a comparatively high martensite fraction. The hardness of the HAZ decreased after PWHT in both steels, but the dark region was formed near the fusion line in which the hardness was locally high. In the case of Mn-Mo-Ni low alloy steel, formation of fine Cr-carbides in the weld region near the fusion line by diffusion of C from the base metal resulted in locally high hardness in the dark region. However, the precipitates of the region in the Ni-Cr-Mo low alloy steel were similar to that in the base metal, and the hardness in the region was not greatly different from that in the base metal.

Microstructures and Hardness of DISK Laser Welds in Al-Si Coated Boron Steel and Zn Coated DP Steel (Al-Si Coated Boron Steel과 Zn Coated DP Steel 이종금속의 DISK Laser 용접부 미세조직과 경도)

  • An, Yong-Gyu;Kang, Chung-Yun;Kim, Young-Su;Kim, Cheol-Hee;Han, Tae-Kyo
    • Journal of Welding and Joining
    • /
    • v.29 no.1
    • /
    • pp.90-98
    • /
    • 2011
  • Al-Si coated Boron steel and Zn coated DP steel were welded using DISK laser and the microstructure and hardness of the weld were investigated. Full penetration was obtained, when the welding speed was lower than 4m/min. In the specimen welded with laser power of 3 kW and welding speed of 2 m/min, the hardness was the highest in the heat affect zone in the boron steel (HAZ-B) and that of the heat affect zone in the DP steel (HAZ-D) was lower than HAZ-B. The hardness of fusion zone was in between those of HAZ-B and HAZ-D. The decreased hardness from each HAZ to base metal(BM) could be explained that ferrite contents increases when access to the BM. The variation of hardness in the welds could be explained by the difference of microstructure, that is, full martensite in HAZ-B, mixture of martensite and bainite in the fusion zone, and the mixture of martensite, ferrite and bainite in HAZ-D.

A Study on the Mechanical Properties by High-Frequency Induction Hardening of SCM440 Steel (고주파 담금질에 의한 SCM440강의 기계적 특성에 관한 연구)

  • Ahn, Seok-Hwan;Nam, Ki-Woo;Kim, Tae-Il;Lee, Mun-Yong;Kim, Dong-Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.74-80
    • /
    • 2009
  • Surface hardening treatments, such as using the high-frequency induction hardening method, are widely used to increase the fatigue life and prevent the failure of materials by locally increasing the surface hardness. This method, in particular, brings an improvement in static strength by compressive residual surface stress due to the hardening. In this study, the mechanical properties of high-frequency induction hardened SCM440 steel were investigated. These results were also compared with those for base metal and a Q/T (tempering after quenching) treatment specimen. The test results showed that partially high-frequency induction hardened SCM440 steel specimens were more improved in static strength, surface hardness, fatigue limit, and anti-wear than the base metal and Q/T treatment specimens. In particular, the fatigue limit of the high-frequency induction hardened SCM440 steel increased by more than about 52% compared to that of base metal and by about 25% compared to that of the Q/T specimen.

Microstructure and Tensile Strength Property of Arc Brazed DP steel using Cu-Sn Insert Metal (Cu-Sn 삽입금속을 이용한 DP강의 아크 브레이징 접합부의 미세조직과 인장특성)

  • Cho, Wook-Je;Cho, Young-Ho;Yun, Jung-Gil;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.31 no.1
    • /
    • pp.58-64
    • /
    • 2013
  • The following results were obtained, microstructures and tensile properties in arc brazed joints of DP(dual phase) steel using Cu-5.3wt%Sn insert metal was investigated as function of brazing current. 1) The Fusion Zone was composed of ${\alpha}Fe+{\gamma}Cu$ and Cu23Sn2. The reason for the formation of these solid solutions. Despite, Fe & Cu were impossible to solid solution at room temperature. It's melting & reaction to something of insert metal & Base Metal (DP Steel) by Arc. Brazing Process has faster cooling rate then Cast Process, Supersaturated solid solution at room temperature. 2) The increase Hardness of Fusion Zone was directly proportional to the rise of welding current. Because, ${\alpha}Fe+{\gamma}Cu$ phase (higher hardness than the Cu23Sn2.(104.1Hv < 271.9Hv)) Volume fraction was Growth, due to increasing the amount of base metal melting by High current. 3) The results of tensile shear test by Brazing, All specimens happen to fracture in Fusion Zone. On the other hand, when Brazing Current increasing tend to rise tensile load. but it was very small, about 26-30% of the base metal. 4) The result of fracture analysis, The crack initiate at Triple Point for meet to Upper B.M/Under B.M/Fusion Zone. This Crack propagated to Fusion zone. So ruptured by tensile strength. The Reason to in the fusion zone fracture, Fusion zone by Brazing of hardness (strength) was very lower then the base metal (DP steel). In addition the Fusion Zone's thickness in triple point was thin than the base metal's thickness in triple point.

Influence on properties of base metal after elimination of lifting-lug member in a dissimilar welding between steel base and steel lifting lug

  • Park, Jeongung;An, Gyubaek;Lee, Haewoo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.858-864
    • /
    • 2019
  • The increasing demands of lifting lugs can be attributed to the rapid advancement of shipbuilding and offshore-structure production technologies and an exponential increase in the size of the block units of ship structures. Therefore, to ensure safety during the transportation and turnover of large blocks, it is important to determine the structural integrity and position of lifting lugs. However, because the manufacturing cost and availability of lugs are important considerations, low cost and easily obtainable steel compositions of grades different from those of the blocks are often used as alternatives. The purpose of this study is to investigate the effect of a lifting-lug metal on the physical properties of a base metal in a dissimilar welding between the base metal and lifting lug. The effect was evaluated by observing the metal microstructures and determining the hardness and dilution values on the cross-sectional surface of the lifting lug. According to the results of the metal microstructures, impact, hardness, and emission spectrochemical analysis at the surface from where the lug was removed confirmed that the chemical composition of the lifting-lug metal did not influence the physical properties of the base metal.