• Title/Summary/Keyword: Hardness measurement

검색결과 548건 처리시간 0.025초

수용성염에 의한 고무의 접착특성 및 기계적 강도 (A Study on Adhesion of Mechanical Properties of Rubber by Water-soluble salt)

  • 김성혜;전준하;엄기용
    • 접착 및 계면
    • /
    • 제19권2호
    • /
    • pp.55-59
    • /
    • 2018
  • 본 연구는 신발의 겉창인 고무 접착공정에서 버핑, 산, 알칼리 프라이머 전처리 공정을 생략하여 공정의 간소화로 생산 효율을 높이기 위해 수용성염을 포함하는 고무에 대한 접착특성과 기계적 특성을 고찰하였다. 산성염, 염기성염, 중성염을 평가한 결과, 염기성염을 포함된 고무 성형물의 경우 수성 접착제에 대해 우수한 접착효과를 보였다. 이는 염기성염이 하이드로옥시염으로 존재함에 따라 고무표면이 친수화 되면서 수성접착제에 우수한 접착효과를 보였다. 이것은 접촉각 및 IR측정으로 확인할 수 있었다. 또한, 염기성염이 포함된 고무 성형물의 경우 가교밀도가 증가되어 마모 특성 및 경도는 증가하지만 가교시간을 지연시키는 요인으로 작용하였다.

Hydrophobic and Mechanical Characteristics of Hydrogenated Amorphous Carbon Films Synthesized by Linear Ar/CH4 Microwave Plasma

  • Han, Moon-Ki;Kim, Taehwan;Cha, Ju-Hong;Kim, Dong-Hyun;Lee, Hae June;Lee, Ho-Jun
    • Applied Science and Convergence Technology
    • /
    • 제26권2호
    • /
    • pp.34-41
    • /
    • 2017
  • A 2.45 GHz microwave plasma with linear antenna has been prepared for hydrophobic and wear-resistible surface coating of carbon steel. Wear-resistible properties are required for the surface protection of cutting tools and achieved by depositing a hydrogenated amorphous carbon film on steel surface through linear microwave plasma source that has $TE_{10}-TEM$ waveguide. Compared to the existing RF plasma source driven by 13.56 MHz, linear microwave plasma source can easily generate high density plasma and provide faster deposition rate and wider process windows. In this study, $Ar/CH_4$ gas mixtures are used for hydrogenated amorphous carbon film deposition. When microwave power of 1000 W is applied, 40 cm long uniform $Ar/CH_4$ plasma could be obtained in gas pressure of 200~400 mTorr. The Vickers hardness measurement of hydrogenated amorphous carbon film on steel surface was evaluated. It was found the optimized deposition condition at $Ar:CH_4=25:25$ sccm, 300 mTorr with microwave power of 1000W and RF bias power of 100W. By deposition of hydrogenated amorphous carbon film, contact angle on steel surfaces increases from $43.9^{\circ}$ to $93.2^{\circ}$.

FLIP CHIP ON ORGANIC BOARD TECHNOLOGY USING MODIFIED ANISOTROPIC CONDUCTIVE FILMS AND ELECTROLESS NICKEL/GOLD BUMP

  • Yim, Myung-Jin;Jeon, Young-Doo;Paik, Kyung-Wook
    • 마이크로전자및패키징학회지
    • /
    • 제6권2호
    • /
    • pp.13-21
    • /
    • 1999
  • Flip chip assembly directly on organic boards offers miniaturization of package size as well as reduction in interconnection distances resulting in a high performance and cost-competitive Packaging method. This paper describes the investigation of alternative low cost flip-chip mounting processes using electroless Ni/Au bump and anisotropic conductive adhesives/films as an interconnection material on organic boards such as FR-4. As bumps for flip chip, electroless Ni/Au plating was performed and characterized in mechanical and metallurgical point of view. Effect of annealing on Ni bump characteristics informed that the formation of crystalline nickel with $Ni_3$P precipitation above $300^{\circ}C$ causes an increase of hardness and an increase of the intrinsic stress resulting in a reliability limitation. As an interconnection material, modified ACFs composed of nickel conductive fillers for electrical conductor and non-conductive inorganic fillers for modification of film properties such as coefficient of thermal expansion(CTE) and tensile strength were formulated for improved electrical and mechanical properties of ACF interconnection. The thermal fatigue life of ACA/F flip chip on organic board limited by the thermal expansion mismatch between the chip and the board could be increased by a modified ACA/F. Three ACF materials with different CTE values were prepared and bonded between Si chip and FR-4 board for the thermal strain measurement using moire interferometry. The thermal strain of ACF interconnection layer induced by temperature excursion of $80^{\circ}C$ was decreased with decreasing CTEs of ACF materials.

  • PDF

Plasma nitriding on chromium electrodeposit

  • Wang Liang;K.S. Nam;Kim, D.;Kim, M.;S.C. Kwon
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2001년도 추계학술발표회 초록집
    • /
    • pp.29-30
    • /
    • 2001
  • This paper presents some results of plasma nitriding on hard chromium deposit. The substrates were C45 steel and $30~50{\;}\mu\textrm{m}$ of chromium deposit by electroplating was formed. Plasma nitriding was carried out in a plasma nitriding system with $95NH_3{\;}+{\;}SCH_4$ atmosphere at the pressure about 600 Pa and different temperature from $450^{\circ}C{\;}to{\;}720^{\circ}C$ for various time. Optical microscopy and X-ray diffraction were used to evaluate the characteristics of surface nitride layer formed by nitrogen diffusion from plasma atmosphere inward iCr coating and interface carbide layer formed by carbon diffusion from substrate outward Cr coating. The microhardness was measured using microhareness tester at the load of 100 gf. Corrosion resistance was evaluated using the potentiodynamic measurement in 3.5% NaG solution. A saturated calomel electrode (SiCE) was used as the reference electrode. Fig.1 shows the typical microstructures of top surface and cross-section for nitrided and unnitrided samples. Aaer plasma nitriding a sandwich structure was formed consisting of surface nitride layer, center chromium layer and interface carbide layer. The thickness of nitride and carbide layers was increased with the increase of processing temperature and time. Hardness reached about 1000Hv after nitriding while 900Hv for unnitrided hard chromium deposit. X-ray diffraction indicated that surface nitrided layer was a mixture of $Cr_2N$ and CrN at low temperature and erN at high temperature (Fig.2). Anodic polarization curves showed that plasma nitriding can greatly improve the corrosion resistance of chromium e1ectrodeposit. After plasma nitriding, the corrosion potential moved to noble direction and passive current density was lower by 1 to 4 orders of magnitude compared with chromium deposit(Fig.3).

  • PDF

keV and MeV Ion Beam Modification of Polyimide Films

  • Lee, Yeonhee;Seunghee Han;Song, Jong-Han;Hyuneui Lim;Moojin Suh
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2000년도 제18회 학술발표회 논문개요집
    • /
    • pp.170-170
    • /
    • 2000
  • Synthetic polymers such as polyimide, polycarbonate, and poly(methyl methacrylate) are long chain molecules which consist of carbon, hydrogen, and heteroatom linked together chemically. Recently, polymer surface can be modified by using a high energy ion beam process. High energy ions are introduced into polymer structure with high velocity and provide a high degree of chemical bonding between molecular chains. In high energy beam process the modified polymers have the highly crosslinked three-dimensionally connected rigid network structure and they showed significant improvements in electrical conductivity, in hardness and in resistance to wear and chemicals. Polyimide films (Kapton, types HN) with thickness of 50~100${\mu}{\textrm}{m}$ were used for investigations. They were treated with two different surface modification techniques: Plasma Source Ion Implantation (PSII) and conventional Ion Implantation. Polyimide films were implanted with different ion species such as Ar+, N+, C+, He+, and O+ with dose from 1 x 1015 to 1 x 1017 ions/cm2. Ion energy was varied from 10keV to 60keV for PSII experiment. Polyimide samples were also implanted with 1 MeV hydrogen, oxygen, nitrogen ions with a dose of 1x1015ions/cm2. This work provides the possibility for inducing conductivity in polyimide films by ion beam bombardment in the keloelectronvolt to megaelectronvolt energy range. The electrical properties of implanted polyimide were determined by four-point probe measurement. Depending on ion energy, doses, and ion type, the surface resistivity of the film is reduced by several orders of magnitude. Ion bombarded layers were characterized by Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS), XPS, and SEM.

  • PDF

순티타늄판의 Nd:YAG 레이저 용접성에 관한 연구(II) - 맞대기 용접 특성 - (A Study of Weldability for Pure Titanium by Nd:YAG Laser(II) - Welding Properties of Butt Welding -)

  • 김종도;곽명섭;송무근;박성하
    • Journal of Welding and Joining
    • /
    • 제27권6호
    • /
    • pp.68-73
    • /
    • 2009
  • Recently, as titanium and titanium alloys are being increasingly used in wide areas, there are on-going researches to obtain high quality weld zone. In particular, growing interest is being drawn to laser welding, which involves low heat input and large aspect ratio in various welding processes and can facilitate shield in atmospheric condition compared with electron beam welding. The first report covered the analysis of embrittlement by the bead color of weld zone through quantitative analysis of oxygen and nitrogen and measurement of hardness as basic experiment to apply laser welding to titanium. Results indicated that the element that affect embrittlement the most was nitrogen, and as embrittlement and oxygenation go on, bead color changed to silver, gold, brown, blue and gray. This study performed butt welding of pure titanium and STS304 by using 1kW CW Nd:YAG laser, and to find out basic physical properties, evaluated welding performance by laser output, welding speed, root gap and misalignment etc, and examined mechanical properties through tensile stress and Erichsen test. The reason particles of pure titanium welded metal and HAZ are greater than STS304 is because they are pure metal and do not include many impure elements that work as nuclei in case of resolidification, thus becoming coarse columnar crystals eventually. In addition, the reason STS304 requires more energy during welding than pure titanium is because the particle size of base metal is smaller.

순티타늄판의 Nd:YAG 레이저 용접성에 관한 연구(III) - 에지 용접 특성 - (A Study of Weldability for Pure Titanium by Nd:YAG Laser(III) - Weld Properties of Edge Welding -)

  • 김종도;길병래;곽명섭;송무근
    • Journal of Welding and Joining
    • /
    • 제27권6호
    • /
    • pp.74-79
    • /
    • 2009
  • Titanium and titanium alloy can be reproduced immediately even if oxide films($TiO_2$) break apart in sea water. Therefore, since titanium demonstrates large specific strength and outstanding resistance to stress corrosion cracking, crevice corrosion, pitting and microbiologically influenced corrosion in sea water environment, it has been widely applied to heat exchanger for ships. In particular, with excellent elongation, pure titanium may be deemed as optimal material for production of heat exchanger plate which is used with wrinkles formed for efficient heat exchange. Conventional plate type heat exchanger prevented leakage of liquid through insertion of gasket between plates and mechanical tightening by bolts and nuts, but in high temperature and high pressure environment, gasket deterioration and leakage occur, so heat exchanger for LPG re-liquefaction device etc do not use gasket but weld heat exchanger plate for use. On the other hand, since welded plate cannot be separated, it is important to obtain high quality reliable welds. In addition, for better workability and production performance, lasers that can obtain weldment with large aspect ratio and demonstrate fast welding speed even in atmospheric condition not in vacuum condition are used in producing products. So far, 1st report and 2nd report compared and analyzed embrittlement degrees by bead colors of weldment through quantitative analysis of oxygen and nitrogen and measurement of hardness as fundamental experiment for the evaluation of titanium laser welding, and evaluated the welding performance and mechanical properties of butt welding. This study welded specimens in various conditions by using laser and GTA welding machine to apply edge welding to heat exchanger, and evaluated the mechanical strength through tensile stress test. As a result of tensile test, laser weldment demonstrated tensile strength 4 times higher than GTA welds, and porosity could be controlled by increasing and decreasing slope of laser power at overlap area.

보자력 및 잔류자화를 이용한 2.25Cr-1Mo강의 경년열화도 평가 - 미세조직적 접근 (Evaluation of Aging Degradation in 2.25Cr-1Mo Steel by Coercivity and Remanence Measurements - Microstructural Approach)

  • 변재원;권숙인
    • 비파괴검사학회지
    • /
    • 제22권1호
    • /
    • pp.65-73
    • /
    • 2002
  • 2.25Cr-1M 강이 $540^{\circ}C$에서 장시간 노출되었을 때 일어나는 미세조직 변화를 모사하기 위해 인공 열화를 실시하였으며 이에 대해 미세조직(탄환화물의 평균등가크기 및 단위면 개수), 기계적 성질 (인장강도 및 경도), 자기적 성질(보자력 및 잔류자화)을 측정하였다. 이들 결과를 비교함으로써 열화에 따른 자기적 성질의 변화와 미세조직 사이의 상관관계률 규명하였다. 탄화물을 그 형장에 따라 막대상, 구상, 침상으로 분류하였으며 침상의 탄화물은 열화 초반부에 급격히 소멸되는 경향을 보였다. 또한 보자력과 잔류자화는 열화 초반부에 급격히 감소한 후 점차 완만히 감소하는 경향을 보였다. 기계적 성질과 보자력 및 잔류자화 사이에는 선형적 상관관계가 존재하였다.

Adhesive Behaviors of the Aluminum Alloy-Based CrN and TiN Coating Films for Ocean Plant

  • Murakami, Ri-Ichi;Yahya, Syed Qamma Bin
    • International Journal of Ocean System Engineering
    • /
    • 제2권2호
    • /
    • pp.106-115
    • /
    • 2012
  • In the present study, TiN and CrN films were coated by arc ion plating equipment onto aluminum alloy substrate, A2024. The film thickness was about 4.65 ${\mu}m$. TiN and CrN films were analyzed by X-ray diffraction and energy dispersive X-ray equipments. The Young's modulus and the micro-Vickers hardness of aluminum substrate were modified by the ceramic film coatings. The difference in Young's modulus between substrate and coating film would affect on the wear resistance. The critical load, Lc, was 75.8 N for TiN and 85.5 N for CrN. It indicated from the observation of optical micrographs for TiN and CrN films that lots of cracks widely propagated toward the both sides of scratch track in the early stage of MODE I. TiN film began to delaminate completely at MODE II stage. The substrate was finally glittered at MODE III stage. For CrN film, a few crack can be observed at MODE I stage. The delamination of film was not still occurred at MODE II and then was happened at MODE III. This agrees with critical load measurement which the adhesive strength was greater for CrN film than for TiN film. Consequently, it was difficult for CrN to delaminate because the adhesive strength was excellent against Al substrate. The wear process, which the film adheres and the ball transfers, could be enhanced because of the increase in loading. The wear weight of ball was less for CrN than for TiN. This means that the wear damage of ball was greater for TiN than for CrN film. It is also obvious that it was difficult to delaminate because the CrN coating film has high toughness. The coefficient of friction was less for CrN coating film than for TiN film.

유리기판 위에 형성된 Al/Ni 및 TiW/Ni 다층 금속배선막의 계면 접합력 및 나노압입특성 평가 (Measurement of Adhesion Strength and Nanoindentation of Metal Interconnections of Al/Ni and TiW/Ni Layers Formed on Glass Substrate)

  • 조철민;김재호;황소리;윤여현;오용준
    • 대한금속재료학회지
    • /
    • 제48권12호
    • /
    • pp.1116-1122
    • /
    • 2010
  • Metal interconnections of multilayer Al/Ni and TiW/seed-Ni/Ni were formed on glass, and the adhesion strength and nanoindentation response of the composite layers were evaluated. The Al/Ni multilayer was formed by an anodic bonding of glass to Al and subsequent electroless plating of Ni, while the TiW/Ni multilayer was fabricated by sputter deposition of TiW and seed-Ni onto glass and electroless plating of Ni. Because of the diffusion of aluminum into glass during the anodic bonding, anodically bonded glass/Al joint exhibited greater interfacial strength than the sputtered glass/TiW one. The Al/Ni on glass also showed excellent resistance against delamination by bending deformation compared to the TiW/seed-Ni/Ni on glass. From the nanoindentation experiment of each metal layer on glass, it was found that the aluminum layer had extremely low hardness and elastic modulus similar to the glass substrate and played a beneficial role in the delamination resistance by lessening stress intensification at the joint. The indentation data of the multilayers also supported superior joint reliability of the Al/Ni to glass compared to that of the TiW/seed-Ni/Ni to glass.