• 제목/요약/키워드: Hardness depth

검색결과 451건 처리시간 0.033초

CW Nd:YAG 레이저를 이용한 중탄소강의 열처리특성 (Heat treatment characteristics of medium carbon steel by CW Nd:YAG Laser)

  • 신호준;유영태;안동규;임기건
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.438-443
    • /
    • 2005
  • Laser surface hardening is an effective technique used to improve the tribological properties and also to increase the service life of automobile components such as camshafts, crankshatfs, lorry brake drums and gears. High power CO2 lasers and Nd:YAG lasers are employed for localized hardening of materials and hence are of potential application in the automobile industries. The heat is conducted rapidly into the bulk of the specimen causing self-quenching to occur and the formation of martensitic structure. In this investigation, the microstructure features occurring in Nd:YAG laser hardening SM45C steel are discussed with the use of optical microscopic and scanning electron microscopic analysis. Moreover, This paper describes the optimism of the processing parameters for maximum hardened depth of SM45C steel specimens of 3mm thickness by using CW Nd:YAG laser. Travel speed was varied from 0.6m/min to 1.0m/min. The maximum hardness and case depth fo SM45C steel are 780Hv and 0.4mm by laser hardening.

  • PDF

수소주입에 따른 590 MPa급 DP강 표면층의 미소경도와 조직특성 (Micro-Hardnesses and Microstructural Characteristics of Surface Layer of 590MPa DP Steels According to Hydrogen Charging)

  • 강계명;박재우
    • 한국재료학회지
    • /
    • 제20권11호
    • /
    • pp.581-585
    • /
    • 2010
  • High strength sheet steels for automobile are seriously compromised by hydrogen embrittlement. This issue has been continuously studied, but the field of interest, which lies between microstructural characteristics and hydrogen behavior with hydrogen charging, has not yet been thoroughly investigated. This study was done to investigate the behavior of hydrogen according to the hydrogen volume fraction on 590MPa grade DP steels, which are developed under hydrogen charging conditions as high strength sheet steels for automobiles. The penetration depths and the mechanical properties, according to charging conditions, were investigated through the distribution of micro-hardness and the microstructural observation of the subsurface zone. It was found that the amount of hydrogen trapping in 590MPa DP steels was related to the austenite volume fraction. It was confirmed that the distribution of micro-hardnesses according to the depth of the subsurface zone under the free surface showed the relationship of the depth of the hydrogen saturation between the charging conditions.

소재의 안전전단을 위한 비파괴 압입 및 소형펀치 시험법 연구 (A Study of Non-destructive Indentation and Small Punch Tests for Monitoring Materials Reliability)

  • 옥명렬;주장복;이정환;안정훈;남승훈;이해무;권동일
    • 한국가스학회:학술대회논문집
    • /
    • 한국가스학회 1997년도 추계학술발표회 논문집
    • /
    • pp.78-85
    • /
    • 1997
  • Indentation and small punch tests are very powerful methods to monitor the materials reliability since they are very simple, easy and almost non-destructive. First, recently-developed continuous indentation test can provide the more material properties such as hardness, elastic modulus, yield strength, work-hardening exponent, etc., than the conventional hardness test. In our study, the true stress-strain curve was derived from the indentation load-depth curve for spherical indentation. In detail, the strain was able to be obtained from plastic depth/contact radius ratio, and the flow stress was from mean contact pressure through the analysis of elastic-plastic indentation stress field. Secondly, the small punch test was studied to evaluate the fracture toughness and defomation properties such as elastic modulus and yield strength. Like the indentation test, this test can be applied without severe damage of the target structure.

  • PDF

가시광선의 파장과 광도가 광중합형 복합레진의 경화에 미치는 영향 (THE EFFECTS OF WAVELENGTH AND INTENSITY OF VISIBLE LIGHT ON THE CURING OF VISIBLE LIGHT CURED COMPOSITE RESIN)

  • 이채경;허복
    • Restorative Dentistry and Endodontics
    • /
    • 제14권1호
    • /
    • pp.149-159
    • /
    • 1989
  • The purpose of this study was to assess the effects of wavelength and intensity of light curing units on the curing of composite resin. The wavelength and intensity of nine units were evaluated with Optical Multichannel Analyzer and Radiometer. Two-part split stainless steel mold with a cylindrical hole-3.0mm in diameter, 6.0mm in hgieht-was prepared. After placing a Mylar strip between two parts, 100 specimens were made by inserting each of four composite resins into the mold and irradiating for 20 seconds with five light units alternatively. The curing depths were measured by scraping method and evaluated by two-way ANOVA. And Vicker's hardness measurements were made on the longitudinally sectioned surface at 0.5mm interval. The results were as follows: 1. Visilux 2 showed a narrow spectral band within the effective wavelength in initiating polymerization and the highest intensity. Translux showed the diffuse spectrum of wavelength and the lower light intensity. 2. Visilux 2 showed the highest curing effect in any composite resin and then followed by Optilux, Efos 35, Heliomat and Translux. (p < 0.01) 3. Durafill showed the deepest curing depth in any light unit and then followed by Bisfil M, Silux and Heliosit. (p < 0.01). 4. Maximum hardness values showed 0.1mm and 0.5mm under top surface and then gradually decreased with depth.

  • PDF

밤의 화염박피 시스템 최적화에 관한 연구(II) - 화염박피 공정의 최적화 - (Study on Optimization of Flame Peeling System for Chestnut (II) - Optimization of Flame Peeling Process for Chestnut -)

  • 김종훈;박재복;최창현;이충호
    • Journal of Biosystems Engineering
    • /
    • 제29권1호
    • /
    • pp.53-58
    • /
    • 2004
  • The purpose of this study was to evaluate an optimization model to determine the operation conditions of the chestnuts flame peeling system. The results of this study were summarized as follows. The optimization model was developed and evaluated to represent the flame peeling characteristics of the domestic chestnuts. When the heating depth was selected for various utilization of the peeled chestnuts, the model could determine the optimal conditions of the hardness of the chestnut shells, the flame temperature, and the flame time to get the maximum peeling ratio of the chestnut flame peeling system. When the heating depth was limited to 2.2 mm, the optimization model determined the proper operation conditions and the maximum peeling ratio such as 1594 g/$\textrm{mm}^2$ of the hardness of the chestnut shells, 780$^{\circ}C$ of the flame temperature, 29 second of the flame time, and 98.1 % of the peeling ratio.

초음파 나노 표면개질 기술의 정하중 레벨이 SKD61 강의 피로특성에 미치는 영향 (Effect of Static Load Level of Ultrasonic Nanocrystal Surface Modification Technology on Fatigue Characteristics of SKD61)

  • 서창민;김성환
    • 한국해양공학회지
    • /
    • 제22권2호
    • /
    • pp.99-105
    • /
    • 2008
  • Ultrasonic nanocrystal surface modification (UNSM) is a method to induce severe plastic deformation to a material surface, so that the structure of the material surface becomes a nanocrystal structure from the surface to a certain depth. It improves the mechanical properties, namely hardness, compressive residual stress, and fatigue characteristics. Specimens of SKD61 were tested to verify the effects of the variation of UNSM static load level on fatigue characteristics. The results were as follows: the grain size of SKD61 treated with UNSM became very fine from the material surface to a $100{\mu}m$ depth. The surface hardness of SKD61 was increased up to 37% after UNSM. And fatigue strength at $10^7$ cycles was increased by 8.3, 11.2, and 17.9% respectively, when the static load levels of UNSM were 4, 6, 8 kgf.

TRIP1180 판재의 냉간 스탬핑공정에서 금형강의 경도 특성에 따른 내마모성 평가 (Quantitative Evaluation of Wear Resistance of Stamping Tool with Respect to Hardness of Tool Materials in Cold Stamping of TRIP1180 Steel Sheets)

  • 방준호;배기현;송정한;김홍기;이명규
    • 소성∙가공
    • /
    • 제31권3호
    • /
    • pp.129-135
    • /
    • 2022
  • The purpose of this study was to quantitatively evaluate the influence of hardness of tool materials on wear resistance in the sheet metal forming process. Punches used in the wear test were made of STD-11 and K340 tool material, and the tempering temperature was set to 530℃ and 500℃, respectively, to control the hardness of the tool materials. The punches mimic the shape of stamping tool of automotive body component to reflect its plastic deformation, and are designed to concentrate wear on the curvature region of punches. Progressive die and coil sheet were used to save time, cost, and raw sheet materials. By quantitatively measuring the wear depth of the punches, the wear behavior and mechanism of the punches were investigated, and characteristics of hardness and wear resistance according to tool materials and tempering temperatures were evaluated. Testing results indicate that the punch made of K340 tool steel with higher hardness had better wear resistance than that of STD-11 tool steel, and the hardness and wear resistance of tool steel were significantly impacted by the tempering temperature.

아연도금강관의 GMAW에서 용접변수가 비드형상과 미세조직과 경도에 미치는 영향 (Effect of Welding Parameters on Bead Shape, Microstructure and Hardness of Galvanized Steel Pipe Welds with GMAW)

  • 임영민;이완규;김세철;고진현
    • 한국산학기술학회논문지
    • /
    • 제14권2호
    • /
    • pp.535-541
    • /
    • 2013
  • 본 연구에서는 아연도금강관 용접에 용접 전류, 전압과 보호가스가 용접 비드 형상과 미세조직과 경도에 미치는 영향을 조사하였다. 전압, 전류과 보호가스 종류 및 조성의 변화가 용접 비드의 높이와 너비, 용입깊이에 영향을 미침을 확인하였다. 비드높이에는 보호가스 Ar 가스, 용입에는 $CO_2$ 가스, 그리고 비드너비에는 Ar+$O_2$ 가스가 가장 큰 영향을 미쳤다. 용접부의 경도에서는 Ar+10% $O_2$ 와 Ar+20% $CO_2$ 가스 사용 시 결정립계 페라이트와 다각형 페라이트가 생성되어 낮았으며, Ar+2% $O_2$ 가스를 사용했을 때는 아시큘러 페라이트와 베이나이트적 페라이트와 사이드플레이트 페라이트가 생성되어 경도가 높았다.

진공침탄을 위한 처리조건 설정에 관한 연구 (A Study on Setting up Condition of Treatment for Vacuum Carburizing)

  • 이상길;강순배;정병호;김한군
    • 열처리공학회지
    • /
    • 제5권4호
    • /
    • pp.195-200
    • /
    • 1992
  • SCM 415 has been vacuum carburized in the carburizing pressure of 60-65kpa and the carburizing temperature of 1233k and 1273k after varied to 0-20 in the ratio of $N_2/C_3H_8$ and then diffusion treated for various times at 1123k. The results obtained from the experiment are as follows. 1. With increasing from 0 to 20 in ratio of $N_2/C_3H_8$ the sooting formation of surface after carburizing considerably decreased. 2. The hardness control and surface carbon content of carburizing surface has been modified by the addition of nitrogen to the propan. 3. The appoximate value of k is indirectry calculated at 1123k which results are obtained to $0.58{\times}10^{-2}(wt.%.S^{-1/2})$. 4. A great deal of propan by addition of nitrogen gas in carburizing gas was possible to saving without considerable change in case hardening depth. 5. The effective carburizing depth range is obtained to 0.8-1.1mm by diffusion temperature of 1123k after carburization at 1273k-3.6ks, and the surface hardness is increased as the increasing of $T_D/T_c$ in our experimental condition, and the maximum hardness as reachin distance from surface is decreased.

  • PDF

유한요소해석 및 실험에 의한 S45C 시편의 고주파 유도경화에 관한 연구 (A Study on High Frequency Induction Hardening of S45C Specimen by FEA and Experiment)

  • 박관석;최진규;이석순
    • 항공우주시스템공학회지
    • /
    • 제12권5호
    • /
    • pp.1-7
    • /
    • 2018
  • 본 연구에서는 전자기-열 연동 모사를 기반으로 한 고주파 유도경화 해석방법을 제안하였다. 고주파 유도가열 해석 시 온도에 따른 재료의 물성치 변화 및 냉각 요소를 고려한 유한요소해석 및 이를 S45C 시편을 이용한 고주파 유도경화 실험결과와 비교하였다. S45C 시편을 마이크로 비커스를 사용하여 경도를 측정하여 경화깊이를 확인하였고 이를 유한요소해석 결과와 비교하였다. 고주파 유도가열 해석결과 온도는 S45C의 A2변태점인 $750^{\circ}C$도 이상 가열되었으며, 급랭 시 $200^{\circ}C$이하였다. 유한요소해석결과와 실험에 의한 경화깊이 차이는 0.2mm 수준인 것을 확인할 수 있었다.