• 제목/요약/키워드: Hard C -Means(HCM)

검색결과 37건 처리시간 0.026초

유전자 알고리즘에 의한 IG기반 퍼지 모델의 최적 동정 (Optimal Identification of IG-based Fuzzy Model by Means of Genetic Algorithms)

  • 박건준;이동윤;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.9-11
    • /
    • 2005
  • We propose a optimal identification of information granulation(IG)-based fuzzy model to carry out the model identification of complex and nonlinear systems. To optimally identity we use genetic algorithm (GAs) sand Hard C-Means (HCM) clustering. An initial structure of fuzzy model is identified by determining the number of input, the selected input variables, the number of membership function, and the conclusion inference type by means of GAs. Granulation of information data with the aid of Hard C-Means(HCM) clustering algorithm help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polynomial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms(GAs) and the least square method. Numerical example is included to evaluate the performance of the proposed model.

  • PDF

유전자적 최적 정보 입자 기반 퍼지 추론 시스템 (Genetically Optimized Information Granules-based FIS)

  • 박건준;오성권;이영일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.146-148
    • /
    • 2005
  • In this paper, we propose a genetically optimized identification of information granulation(IG)-based fuzzy model. To optimally design the IG-based fuzzy model we exploit a hybrid identification through genetic alrogithms(GAs) and Hard C-Means (HCM) clustering. An initial structure of fuzzy model is identified by determining the number of input, the seleced input variables, the number of membership function, and the conclusion inference type by means of GAs. Granulation of information data with the aid of Hard C-Means(HCM) clustering algorithm help determine the initial paramters of fuzzy model such as the initial apexes of the membership functions and the initial values of polyminial functions being used in the premise and consequence part of the fuzzy rules. And the inital parameters are tuned effectively with the aid of the genetic algorithms and the least square method. And also, we exploite consecutive identification of fuzzy model in case of identification of structure and parameters. Numerical example is included to evaluate the performance of the proposed model.

  • PDF

Design of Hard Partition-based Non-Fuzzy Neural Networks

  • Park, Keon-Jun;Kwon, Jae-Hyun;Kim, Yong-Kab
    • International journal of advanced smart convergence
    • /
    • 제1권2호
    • /
    • pp.30-33
    • /
    • 2012
  • This paper propose a new design of fuzzy neural networks based on hard partition to generate the rules of the networks. For this we use hard c-means (HCM) clustering algorithm. The premise part of the rules of the proposed networks is realized with the aid of the hard partition of input space generated by HCM clustering algorithm. The consequence part of the rule is represented by polynomial functions. And the coefficients of the polynomial functions are learned by BP algorithm. The number of the hard partition of input space equals the number of clusters and the individual partitioned spaces indicate the rules of the networks. Due to these characteristics, we may alleviate the problem of the curse of dimensionality. The proposed networks are evaluated with the use of numerical experimentation.

The Design of Fuzzy Controller by Means of Genetic Optimization and Estimation Algorithms

  • Oh, Sung-Kwun;Rho, Seok-Beom
    • KIEE International Transaction on Systems and Control
    • /
    • 제12D권1호
    • /
    • pp.17-26
    • /
    • 2002
  • In this paper, a new design methodology of the fuzzy controller is presented. The performance of the fuzzy controller is sensitive to the variety of scaling factors. The design procedure is based on evolutionary computing (more specifically, a genetic algorithm) and estimation algorithm to adjust and estimate scaling factors respectively. The tuning of the soiling factors of the fuzzy controller is essential to the entire optimization process. And then we estimate scaling factors of the fuzzy controller by means of two types of estimation algorithms such as HCM (Hard C-Means) and Neuro-Fuzzy model[7]. The validity and effectiveness of the proposed estimation algorithm for the fuzzy controller are demonstrated by the inverted pendulum system.

  • PDF

Design of improved Mulit-FNN for Nonlinear Process modeling

  • Park, Hosung;Sungkwun Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.102.2-102
    • /
    • 2002
  • In this paper, the improved Multi-FNN (Fuzzy-Neural Networks) model is identified and optimized using HCM (Hard C-Means) clustering method and optimization algorithms. The proposed Multi-FNN is based on FNN and use simplified and linear inference as fuzzy inference method and error back propagation algorithm as learning rules. We use a HCM clustering and genetic algorithms (GAs) to identify both the structure and the parameters of a Multi-FNN model. Here, HCM clustering method, which is carried out for the process data preprocessing of system modeling, is utilized to determine the structure of Multi-FNN according to the divisions of input-output space using I/O process data. Also, the parame...

  • PDF

유전 알고리즘의 기호코딩과 정보입자화를 이용한 퍼지집합 기반 다항식 뉴럴네트워크의 최적 설계 (Optimal Design of Fuzzy Set-based Polynomial Neural Networks Using Symbolic Gene Type and Information Granulation)

  • 이인태;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.217-219
    • /
    • 2006
  • 본 연구는 정보입자와 유전알고리즘의 기호코딩을 통해 퍼지집합 기반 다항식 뉴럴네트워크(IG based gFSPNN)의 최적 설계 제안한다. 기존의 Furry Srt-based Polynomial Neural Networks의 최적설계를 위해 유전자 알고리즘의 이진코딩을 사용하였다. 이지코딩은 스티링 길이 때문에 연산시간이 급격히 증가되는 현상과 해밍절벽(Hamming Cliff)에 따른 급격한 비트변환이 힘들다는 단점이 내제 하였다. 이에 본 논문에서는 스티링 길이와 해밍절벽에 따른 문제를 해결 하기위해 기호코딩을 사용하였다._데이터들의 특성을 모델에 반영하기 위해 Hard C-Means(HCM)을 결합한 Information Granulation(IG)을 사용하여 최적모델 구축 속도를 빠르게 하였다. 실험적 예제를 통하여 제안된 모델의 성능을 평가한다.

  • PDF

UNDX연산자를 이용한 계층적 공정 경쟁 유전자 알고리즘을 이용한 퍼지집합 퍼지 모델의 최적화 (Optimization of Fuzzy Set Fuzzy Model by Means of Hierarchical Fair Competition-based Genetic Algorithm using UNDX operator)

  • 김길성;최정내;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.204-206
    • /
    • 2007
  • In this study, we introduce the optimization method of fuzzy inference systems that is based on Hierarchical Fair Competition-based Parallel Genetic Algorithms (HFCGA) and information data granulation, The granulation is realized with the aid of the Hard C-means clustering and HFCGA is a kind of multi-populations of Parallel Genetic Algorithms (PGA), and it is used for structure optimization and parameter identification of fuzzy model. It concerns the fuzzy model-related parameters such as the number of input variables to be used, a collection of specific subset of input variables, the number of membership functions, the order of polynomial, and the apexes of the membership function. In the optimization process, two general optimization mechanisms are explored. The structural optimization is realized via HFCGA and HCM method whereas in case of the parametric optimization we proceed with a standard least square method as well as HFCGA method as well. A comparative analysis demonstrates that the proposed algorithm is superior to the conventional methods. Particularly, in parameter identification, we use the UNDX operator which uses multiple parents and generate offsprings around the geographic center off mass of these parents.

  • PDF

HCM 방법을 이용한 다중 FNN 설계에 관한 연구 (A Study on the Design of Multi-FNN Using HCM Method)

  • 박호성;윤기찬;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.797-799
    • /
    • 1999
  • In this paper, we design the Multi-FNN(Fuzzy-Neural Networks) using HCM Method. The proposed Multi-FNN uses simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rules. Also, We use HCM(Hard C-Means) method of clustering technique for improvement of output performance from pre-processing of input data. The parameters such as apexes of membership function, learning rates and momentum coefficients are adjusted using genetic algorithms. We use the training and testing data set to obtain a balance between the approximation and the generalization of our model. Several numerical examples are used to evaluate the performance of the our model. From the results, we can obtain higher accuracy and feasibility than any other works presented previously.

  • PDF

HCM과 유전자 알고리즘에 기반한 확장된 다중 FNN 모델 설계 (Design of Extended Multi-FNNs model based on HCM and Genetic Algorithm)

  • 박호성;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.420-423
    • /
    • 2001
  • In this paper, the Multi-FNNs(Fuzzy-Neural Networks) architecture is identified and optimized using HCM(Hard C-Means) clustering method and genetic algorithms. The proposed Multi-FNNs architecture uses simplified inference and linear inference as fuzzy inference method and error back propagation algorithm as learning rules. Here, HCM clustering method, which is carried out for the process data preprocessing of system modeling, is utilized to determine the structure of Multi-FNNs according to the divisions of input-output space using I/O process data. Also, the parameters of Multi-FNNs model such as apexes of membership function, learning rates and momentum coefficients are adjusted using genetic algorithms. An aggregate performance index with a weighting factor is used to achieve a sound balance between approximation and generalization abilities of the model. To evaluate the performance of the proposed model we use the time series data for gas furnace and the NOx emission process data of gas turbine power plant.

  • PDF

HCM을 이용한 퍼지 모델의 On-Line 동정 (On-line Identification of fuzzy model using HCM algorithm)

  • 박호성;박병준;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 G
    • /
    • pp.2929-2931
    • /
    • 1999
  • In this paper, an adaptive fuzzy inference and HCM(Hard C-Means) clustering method are used for on-line fuzzy modeling of nonlinear and complex system. Here HCM clustering method is utilized for determining the initial parameter of membership function of fuzzy premise rules and also avoiding overflow phenomenon during the identification of consequence parameters. To obtain the on-line model structure of fuzzy systems. we use the recursive least square method for the consequent parameter identification. And the proposed on-line identification algorithm is carried out and is evaluated for sewage treatment process system.

  • PDF