• Title/Summary/Keyword: Harbor Crane

Search Result 42, Processing Time 0.028 seconds

Mobile harbor: structural dynamic response of RORI crane to wave-induced rolling excitation

  • Cho, Jin-Rae;Han, Ki-Chul;Hwang, Soon-Wook;Cho, Choon-Soo;Lim, O-Kaung
    • Structural Engineering and Mechanics
    • /
    • v.43 no.5
    • /
    • pp.679-690
    • /
    • 2012
  • A new concept sea-floating port called mobile harbor has been introduced, in order to resolve the limitation of current above-ground port facilities against the continuous growth of worldwide marine transportation. One of important subjects in the design of a mobile harbor is to secure the dynamic stability against wave-induced excitation, because a relatively large-scale heavy crane system installed at the top of mobile harbor should load/unload containers at sea under the sea state up to level 3. In this context, this paper addresses a two-step sequential analytical-numerical method for analyzing the structural dynamic response of the mobile harbor crane system to the wave-induced rolling excitation. The rigid ship motion of mobile harbor by wave is analytically solved, and the flexible dynamic response of the crane system by the rigid ship motion is analyzed by the finite element method. The hydrodynamic effect between sea water and mobile harbor is reflected by means of the added moment of inertia.

Rolling Dynamic Response Analysis of Mobile Harbor Crane by Sea State 3 Wave Excitation (해상상태 3의 파고에 따른 모바일 하버 크레인의 롤링 동응답 해석)

  • Han, Ki-Chul;Hwang, Soon-Wook;Choi, Eun-Ho;Cho, Jin-Rae;Lim, O-Kaung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.5
    • /
    • pp.493-499
    • /
    • 2010
  • In the sea-floating logistics port called mobile harbor a crane system with the different structure from the conventional above-ground container crane is installed. And, the dynamic stability of whole mobile harbor by the wave excitation is definitely affected by the crane positioned at the top. This paper is concerned with the dynamic rolling analysis of the mobile harbor subject to sea state 3 wave excitation, for which two-step analysis procedure composed of theoretical and numerical approaches is employed. First, the rigid rolling of mobile harbor is obtained according to the linear wave theory. And then, the dynamic rolling response of the flexible crane system caused by the rolling excitation of mobile harbor is analyzed by finite element analysis. The coupled interaction effect between the sea wave and the mobile harbor is taken into consideration by the added mass technique.

Estimation of Resistance of Smart Harbor Crane Ship (Smart Harbor Crane Ship의 저항 추정)

  • Shin, Hyun-Kyoung;Kim, Min-Su;Jeong, Won-Jin;Ha, Yong-Hwak
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • Recently, with increasing container ships' volume continuously, the conceptual design "Smart Harbor" of newly logistics processing system has been suggested. It is necessary to estimate resistance and horsepower for the selection of an appropriate propulsor at the initial design stage of Smart Harbor. In this study, CFD and the circulating water channel of the University of Ulsan are employed for estimating the resistance of the Smart Harbor Crane Ship with 1/100 scaled model. Two turbulent models are used. One is realizable k-${\varepsilon}$and the other is Reynolds stress turbulence model. In addition, the effects of the change in y+ and the number of meshes are considered during analysing.

Dynamic Response Optimization of a Mobile Harbor Crane with a Moving Support (지지부가 움직이는 모바일하버용 크레인의 동적 응답 최적설계)

  • Kim, Hyun-Bum;Lee, Jae-Jun;Jang, Hwan-Hak;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.5
    • /
    • pp.497-504
    • /
    • 2012
  • The mobile harbor is a new innovative system that delivers containers from a containership to a harbor without good infrastructure. A crane is installed on the deck of the mobile harbor and transfers the containers. The structure of the crane is influenced by the inertia force that occurs from a moving support. Thus an accurate safety verification considering the moving support is required. Lightweight of the crane structure is also significant in the design for low production cost and efficient operation. Dynamic response optimization can be exploited to achieve these two requirements. Equivalent static loads method is employed for dynamic response optimization of the crane. The equivalent static loads method transforms dynamic loads to equivalent static loads, and static response structural optimization with the transformed equivalent static loads are solved. The process proceeds in a cyclic manner. A new method is proposed to consider the moving supports and the structure of the mobile harbor is optimized using the proposed method.

Structural Optimization of the Mobile Harbor Carne Considering Sea State (해상 상태를 고려한 모바일하버용 크레인의 구조최적설계)

  • Lee, Jae-Jun;Lim, Won-Jong;Jeong, Seong-Beom;Jung, Ui-Jin;Park, Gyung-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.27-36
    • /
    • 2012
  • The mobile harbor is a new concept system to solve the problems of a port. These problems are that container ships cannot be anchored at the dock because they have become larger or the waiting times of anchoring the ships are increased due to heavy container traffic. A new system is designed to carry out the loading and unloading of containers between the mobile harbor and the container ship using the mobile harbor crane at sea. The crane plays an important role when transferring the containers. In this research, various types of the mobile harbor crane are proposed and structural optimization for each type of the crane is carried out. The loading conditions consider the rolling and pitching conditions of the unstable sea state and the wind force are considered. The constraints are mainly the regulations made by the Korean Register of Shipping. The structure of the crane is optimized to minimize the mass while various constraints are satisfied.

Wind Force Coefficients Computation of Gantry Crane by Wind Tunnel Experiment and Structural Analysis of the Crane (풍동실험에 의한 갠트리 크레인의 풍력계수 산출과 구조 해석)

  • Lee, Jae-Hwan;Kim, Tae-Wan;Jang, In-Geun;Han, Soon-Hung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.2
    • /
    • pp.165-170
    • /
    • 2011
  • In this paper, wind force coefficient by wind tunnel experiment is obtained to compute the accurate wind force of the gantry crane model to be used for mobile harbor ship. The first crane model was tested under 20, 30, 40, 52m/s, partially 58m/s and the wind force coefficient is about 2.0 which is very close to the suggested theoretical value. The other is the more reliable crane model and tested under 20, 30, 40m/s also giving the similar realistic wind force coefficient. Also structural analysis of crane model was performed giving the reliable stress level. Since the rolling effect is important for mobile harbor ship, the safety of the crane on the ship needs to be guaranteed. For this, using the computed reaction forces, a tie-down design is suggested which connects the crane and ship to resist the turnover motion of the crane.

Modeling and Anti-sway Control of a Harbor Container Crane (항만 컨테이너 크레인의 모델링과 흔들림 억제 제어 방법)

  • Lim, Chang-Jin;Choi, Chang-Ho;Moon, Sang-Ho;Yang, Byung-Hoon;Kim, Heung-Geun;Choi, Jong-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1465-1467
    • /
    • 2005
  • In this paper, the harbor container crane which transports containers between a container ship and trucks in the harbor is modeled. The equation of motion is simplified for control purpose. The pole placement technique is used to control the crane to minimize load swing angle The objective of the control is to transfer the load as quickly as possible, while minimizing the amplitude of swing at the end of transfer. Computer simulations are provided.

  • PDF

Applying Ultra-WideBand Location System to Yard Crane (UWB위치인식 시스템의 야드 크레인 적용)

  • Park, Dae-Heon;Kang, Bum-Jin;Park, Jang-Woo;Cho, Sung-Eon
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.3
    • /
    • pp.215-219
    • /
    • 2008
  • Recently, a container shipping volume has increased dramatically and continued on a trend of rapid growth, and so the number of container handled at the port increase. therefore, it's increasing about concern of harbor automatism to save distribution costs in harbor. harbor automatism classifies into four large automatism's, gate automatism by using RFID that trailer come with burdening the container to be loaded on ships go though with RFID and Quay-Side container crane automatism that treats cargos loading on ships and automatism of CG that loads containers from yard, and automatism of container transporters that carries containers in between gates. To increase the using efficiency of harbor, detecting exact location of yard crane is very important matter. In this paper, propose about yard crane automatism applied UWB Location system and the development direction.

  • PDF

The Study suitable for Ultra-WideBand Location System in Yard Crane System (야드 크레인 시스템에서 UWB위치인식 시스템 적용연구)

  • Park, Dae-Heon;Kang, Bum-Jin;Park, Jang-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.907-910
    • /
    • 2007
  • Recently, a container shipping volume has increased dramatically and continued on a trend of rapid growth, and so the number of container handled at the port increase. therefore, it's increasing about concern of harbor automatism to save distribution costs in harbor. harbor automatism classifies into four large automatism's, gate automatism by using RFID that trailer come with burdening the container to be loaded on ships go though with RFID and Quay-Side container crane automatism that treats cargos loading on ships and automatism of CG that loads containers from yard, and automatism of container transporters that carries containers in between gates. To increase the using efficiency of harbor, detecting exact location of yard crane is very important matter. In this paper, it intends to discuss about yard crane automatism applied UWB Ranging system and bring up the development direction.

  • PDF