• 제목/요약/키워드: Handwritten Recognition

Search Result 250, Processing Time 0.024 seconds

A Hybrid SVM-HMM Method for Handwritten Numeral Recognition

  • Kim, Eui-Chan;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1032-1035
    • /
    • 2003
  • The field of handwriting recognition has been researched for many years. A hybrid classifier has been proven to be able to increase the recognition rate compared with a single classifier. In this paper, we combine support vector machine (SVM) and hidden Markov model (HMM) for offline handwritten numeral recognition. To improve the performance, we extract features adapted for each classifier and propose the modified SVM decision structure. The experimental results show that the proposed method can achieve improved recognition rate for handwritten numeral recognition.

  • PDF

Improved Handwritten Hangeul Recognition using Deep Learning based on GoogLenet (GoogLenet 기반의 딥 러닝을 이용한 향상된 한글 필기체 인식)

  • Kim, Hyunwoo;Chung, Yoojin
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.7
    • /
    • pp.495-502
    • /
    • 2018
  • The advent of deep learning technology has made rapid progress in handwritten letter recognition in many languages. Handwritten Chinese recognition has improved to 97.2% accuracy while handwritten Japanese recognition approached 99.53% percent accuracy. Hanguel handwritten letters have many similar characters due to the characteristics of Hangeul, so it was difficult to recognize the letters because the number of data was small. In the handwritten Hanguel recognition using Hybrid Learning, it used a low layer model based on lenet and showed 96.34% accuracy in handwritten Hanguel database PE92. In this paper, 98.64% accuracy was obtained by organizing deep CNN (Convolution Neural Network) in handwritten Hangeul recognition. We designed a new network for handwritten Hangeul data based on GoogLenet without using the data augmentation or the multitasking techniques used in Hybrid learning.

HANDWRITTEN HANGUL RECOGNITION MODEL USING MULTI-LABEL CLASSIFICATION

  • HANA CHOI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.27 no.2
    • /
    • pp.135-145
    • /
    • 2023
  • Recently, as deep learning technology has developed, various deep learning technologies have been introduced in handwritten recognition, greatly contributing to performance improvement. The recognition accuracy of handwritten Hangeul recognition has also improved significantly, but prior research has focused on recognizing 520 Hangul characters or 2,350 Hangul characters using SERI95 data or PE92 data. In the past, most of the expressions were possible with 2,350 Hangul characters, but as globalization progresses and information and communication technology develops, there are many cases where various foreign words need to be expressed in Hangul. In this paper, we propose a model that recognizes and combines the consonants, medial vowels, and final consonants of a Korean syllable using a multi-label classification model, and achieves a high recognition accuracy of 98.38% as a result of learning with the public data of Korean handwritten characters, PE92. In addition, this model learned only 2,350 Hangul characters, but can recognize the characters which is not included in the 2,350 Hangul characters

A Recognition Algorithm of Handwritten Numerals based on Structure Features (구조적 특징기반 자유필기체 숫자인식 알고리즘)

  • Song, Jeong-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.151-156
    • /
    • 2018
  • Because of its large differences in writing style, context-independency and high recognition accuracy requirement, free handwritten digital identification is still a very difficult problem. Analyzing the characteristic of handwritten digits, this paper proposes a new handwritten digital identification method based on combining structural features. Given a handwritten digit, a variety of structural features of the digit including end points, bifurcation points, horizontal lines and so on are identified automatically and robustly by a proposed extended structural features identification algorithm and a decision tree based on those structural features are constructed to support automatic recognition of the handwritten digit. Experimental result demonstrates that the proposed method is superior to other general methods in recognition rate and robustness.

Recognition of Unconstrained Handwritten Numerals using Fully-connected RNN (완전궤환 신경망을 이용한 무제약 서체 숫자 인식)

  • 원상철;배수정;최한고
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.1007-1010
    • /
    • 1999
  • This paper describes the recognition of totally unconstrained handwritten numerals using neural networks. Neural networks with multiple output nodes have been successfully used to classify complex handwritten numerals. The recognition system consists of the preprocessing stage to extract features using Kirsch mask and the classification stage to recognize the numerals using the fully-connected recurrent neural networks (RNN). Simulation results with the numeral database of Concordia university, Montreal, Canada, are presented. The recognition system proposed in this paper outperforms other recognition systems reported on the same database.

  • PDF

Off-line recognition of handwritten korean and alphanumeric characters using hidden markov models (Hidden Markov Model을 이용한 필기체 한글 및 영.숫자 오프라인 인식)

  • 김우성;박래홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.9
    • /
    • pp.85-100
    • /
    • 1994
  • This paper proposes a recognition system of constrained handwritten Hangul and alphanumeric characters using discrete hidden Markov models (HMM). HMM process encodes the distortion and similarity among patterns of a class through a doubly stochastic approach. Characterizing the statistical properties of characters using selected features, a recognition system can be implemented by absorbing possible variations in the form. Hangul shapes are classified into six types by fuzzy inference, and their recognition is performed based on quantized features by optimally ordering features according to their effectiveness in each class. The constrained alphanumerics recognition is also performed using the same features used in Hangul recognition. The forward-backward, Viterbi, and Baum-Welch reestimation algorithms are used for training and recognition of handwritten Hangul and alphanumeric characters. Simulation result shows that the proposed method recognizes handwritten Korean characters and alphanumerics effectively.

  • PDF

A Study on Stroke Extraction for Handwritten Korean Character Recognition (필기체 한글 문자 인식을 위한 획 추출에 관한 연구)

  • Choi, Young-Kyoo;Rhee, Sang-Burm
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.375-382
    • /
    • 2002
  • Handwritten character recognition is classified into on-line handwritten character recognition and off-line handwritten character recognition. On-line handwritten character recognition has made a remarkable outcome compared to off-line hacdwritten character recognition. This method can acquire the dynamic written information such as the writing order and the position of a stroke by means of pen-based electronic input device such as a tablet board. On the contrary, Any dynamic information can not be acquired in off-line handwritten character recognition since there are extreme overlapping between consonants and vowels, and heavily noisy images between strokes, which change the recognition performance with the result of the preprocessing. This paper proposes a method that effectively extracts the stroke including dynamic information of characters for off-line Korean handwritten character recognition. First of all, this method makes improvement and binarization of input handwritten character image as preprocessing procedure using watershed algorithm. The next procedure is extraction of skeleton by using the transformed Lu and Wang's thinning: algorithm, and segment pixel array is extracted by abstracting the feature point of the characters. Then, the vectorization is executed with a maximum permission error method. In the case that a few strokes are bound in a segment, a segment pixel array is divided with two or more segment vectors. In order to reconstruct the extracted segment vector with a complete stroke, the directional component of the vector is mortified by using right-hand writing coordinate system. With combination of segment vectors which are adjacent and can be combined, the reconstruction of complete stroke is made out which is suitable for character recognition. As experimentation, it is verified that the proposed method is suitable for handwritten Korean character recognition.

Recognition of Printed and Handwritten Numerals Using Multiple Features and Modularized Neural Networks (다중 특징과 모듈화된 신경회로망을 이용한 인쇄 및 필기체 혼용 숫자 인식)

  • 류강수;김우태;진성일
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.10
    • /
    • pp.1347-1357
    • /
    • 1995
  • In this paper, we describe a modularized neuroclassifier for enhancing the recognition accuracy of mixed printed and handwritten numerals. This classifier combines four modularized subclassifiers using multi-layer perceptron module. The input of each subclassifier is comprised of a group of specialized feature sets. On applying this method to combining several subclassifiers for unconstrained handwritten numerals, the experimental result shows that the performance of individual subclassifier can be improved. In winner-take-all voting method, the result of subclassifier having the highest RF value is selected as the output. The generality of this classifier is tested with 1,080 printed and 3,000 handwritten numerals that was not shown in training the neural networks. Experimental results show 98.2% recognition rate. The typical recognition test with a threshold value(RF=1.5) has shown 97% recognition, 1% substitution and 2% rejection rates.

  • PDF

Recognition of Unconstrained Handwritten Numerals using Chaotic Neural Network (카오틱 신경망을 이용한 서체 숫자 인식)

  • 조재홍;성정원
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1301-1304
    • /
    • 1998
  • Several neural networks have been successfully used to classify complex patterns such as handwritten numerals or words. This paper describes the discrimination of totally unconstrained handwritten numerals using the proposed chaotic neural network (CNN) to improve the recognition rate. The recognition system in the paper consists of the preprocessing stage to extract features using Kirsch mask and the classification stage to recognize numerals using the CNN. In order to evaluate the performance of the proposed network, we performed the recognition with unconstrained handwritten numeral database of Concordia university, Canada. Experimental results show that the CNN based recognizer performs higher recognition rate than other neural network-based methods reported using same database.

  • PDF

Real-Time Handwritten Letters Recognition On An Embedded Computer Using ConvNets (합성곱 신경망을 사용한 임베디드 시스템에서의 실시간 손글씨 인식)

  • Hosseini, Sepidehsadat;Lee, Sang-Hoon;Cho, Nam-Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.84-87
    • /
    • 2018
  • Handwritten letter recognition is important for numerous real-world applications and many topics like human-machine interaction, education, entertainment, and more. This paper describes the implementation of a real-time handwritten letters recognition system on a common embedded computer. Recognition is performed using a customized convolutional neural network, which was designed to work with low computational resources such as the Raspberry Pi platform. The experimental results show that the proposed real-time system achieves an outstanding performance in the accuracy rate and the response time for recognition of twenty-six handwritten letters.

  • PDF