• Title/Summary/Keyword: Hand region

Search Result 1,264, Processing Time 0.028 seconds

Real-Time Recognition Method of Counting Fingers for Natural User Interface

  • Lee, Doyeob;Shin, Dongkyoo;Shin, Dongil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2363-2374
    • /
    • 2016
  • Communication occurs through verbal elements, which usually involve language, as well as non-verbal elements such as facial expressions, eye contact, and gestures. In particular, among these non-verbal elements, gestures are symbolic representations of physical, vocal, and emotional behaviors. This means that gestures can be signals toward a target or expressions of internal psychological processes, rather than simply movements of the body or hands. Moreover, gestures with such properties have been the focus of much research for a new interface in the NUI/NUX field. In this paper, we propose a method for recognizing the number of fingers and detecting the hand region based on the depth information and geometric features of the hand for application to an NUI/NUX. The hand region is detected by using depth information provided by the Kinect system, and the number of fingers is identified by comparing the distance between the contour and the center of the hand region. The contour is detected using the Suzuki85 algorithm, and the number of fingers is calculated by detecting the finger tips in a location at the maximum distance to compare the distances between three consecutive dots in the contour and the center point of the hand. The average recognition rate for the number of fingers is 98.6%, and the execution time is 0.065 ms for the algorithm used in the proposed method. Although this method is fast and its complexity is low, it shows a higher recognition rate and faster recognition speed than other methods. As an application example of the proposed method, this paper explains a Secret Door that recognizes a password by recognizing the number of fingers held up by a user.

Hand shape recognition based on geometric feature using the convex-hull (Convex-hull을 이용한 기하학적 특징 기반의 손 모양 인식 기법)

  • Choi, In-Kyu;Yoo, Jisang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.1931-1940
    • /
    • 2014
  • In this paper, we propose a new hand shape recognition algorithm based on the geometric features using the convex-hull from the depth image acquired by Kinect system. Kinect is a camera providing a depth image and user's skeleton information and used for detecting hand region. In the proposed algorithm, hand region is detected in a depth image acquired by Kinect and convex-hull of the region is found. Boundary points caused by noise and unnecessary points for recognition are eliminated in the convex-hull that changes depending on hand shape. Hand shape is recognized by the sum of internal angle of a polygon that is matched with convex-hull reconstructed with selected boundary points. Through experiments, we confirm that proposed algorithm shows high recognition rate not only for five models but also those cases rotated.

Visual Touch Recognition for NUI Using Voronoi-Tessellation Algorithm (보로노이-테셀레이션 알고리즘을 이용한 NUI를 위한 비주얼 터치 인식)

  • Kim, Sung Kwan;Joo, Young Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.465-472
    • /
    • 2015
  • This paper presents a visual touch recognition for NUI(Natural User Interface) using Voronoi-tessellation algorithm. The proposed algorithms are three parts as follows: hand region extraction, hand feature point extraction, visual-touch recognition. To improve the robustness of hand region extraction, we propose RGB/HSI color model, Canny edge detection algorithm, and use of spatial frequency information. In addition, to improve the accuracy of the recognition of hand feature point extraction, we propose the use of Douglas Peucker algorithm, Also, to recognize the visual touch, we propose the use of the Voronoi-tessellation algorithm. Finally, we demonstrate the feasibility and applicability of the proposed algorithms through some experiments.

Vision-based Motion Control for the Immersive Interaction with a Mobile Augmented Reality Object (모바일 증강현실 물체와 몰입형 상호작용을 위한 비전기반 동작제어)

  • Chun, Jun-Chul
    • Journal of Internet Computing and Services
    • /
    • v.12 no.3
    • /
    • pp.119-129
    • /
    • 2011
  • Vision-based Human computer interaction is an emerging field of science and industry to provide natural way to communicate with human and computer. Especially, recent increasing demands for mobile augmented reality require the development of efficient interactive technologies between the augmented virtual object and users. This paper presents a novel approach to construct marker-less mobile augmented reality object and control the object. Replacing a traditional market, the human hand interface is used for marker-less mobile augmented reality system. In order to implement the marker-less mobile augmented system in the limited resources of mobile device compared with the desktop environments, we proposed a method to extract an optimal hand region which plays a role of the marker and augment object in a realtime fashion by using the camera attached on mobile device. The optimal hand region detection can be composed of detecting hand region with YCbCr skin color model and extracting the optimal rectangle region with Rotating Calipers Algorithm. The extracted optimal rectangle region takes a role of traditional marker. The proposed method resolved the problem of missing the track of fingertips when the hand is rotated or occluded in the hand marker system. From the experiment, we can prove that the proposed framework can effectively construct and control the augmented virtual object in the mobile environments.

Infrared Thermography in Human Hand (적외선 열 특성 지수를 이용한 손 온도 분포 해석)

  • Kim, Eun-Jung;Shin, Seung-Won;Kim, Kyeong-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.39-41
    • /
    • 2006
  • It is important to estimate the hand skin temperature because it reveals not only physiological properties of a certain diseases but also it can estimate even human mental-stress conditions. In this study, we try to estimate the temporal skin temperature distribution of human hand by applying stress-cold test to possibly apply to estimate a subject's blood circulation condition in his or her hand in terms of normal or abnormal state.

  • PDF

Hand Gesture Recognition Using HMM(Hidden Markov Model) (HMM(Hidden Markov Model)을 이용한 핸드 제스처인식)

  • Ha, Jeong-Yo;Lee, Min-Ho;Choi, Hyung-Il
    • Journal of Digital Contents Society
    • /
    • v.10 no.2
    • /
    • pp.291-298
    • /
    • 2009
  • In this paper we proposed a vision based realtime hand gesture recognition method. To extract skin color, we translate RGB color space into YCbCr color space and use CbCr color for the final extraction. To find the center of extracted hand region we apply practical center point extraction algorithm. We use Kalman filter to tracking hand region and use HMM(Hidden Markov Model) algorithm (learning 6 type of hand gesture image) to recognize it. We demonstrated the effectiveness of our algorithm by some experiments.

  • PDF

An expansion technique for tolerance approach to sensitivity analysis in linear programming

  • Kim, Koonchan;Jo, Young-Soo;Kang, Young-Yug
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.549-552
    • /
    • 1996
  • The tolerance approach to the sensitivity analysis in linear programming considers simultaneous and independent variations in the coefficients of the objective funciton or of the right-hand side terms and gives a region in which the coefficients and terms and gives a region in which the coefficients and terms can be changed and still the current optimal basis B for the original problem remains as an optimal basis for the perturbed problem. In this paper we describe a procedure that expands a region S obtained by the tolerance approch into a larger region R, so that more variations in the objective function coefficients or the right-hand side terms are permissible.

  • PDF

Hand motion estimation for interactive image composition (상호작용 영상합성을 위한 손의 움직임 추정)

  • Koo, Ddeo-Ol-Ra;Seo, Yung-Ho;Doo, Kyoung-Soo;Choi, Jong-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.951-952
    • /
    • 2008
  • This paper proposes a new method for image composition which estimates the rotation angle of human hand and uses the reserved image in real-time camera images. First, we capture a background image and extract a interesting region by background subtraction. Next, we estimate the skin region from the interesting region and calculate the rotation angle of estimated skin region using PCA(Principal Components Analysis). Finally, we composite the reserved image for the calculated rotation angle in camera images. The proposed method can be applied to control the 3D avatar for marker-less augmented reality.

  • PDF

Real-time moving object tracking and distance measurement system using stereo camera (스테레오 카메라를 이용한 이동객체의 실시간 추적과 거리 측정 시스템)

  • Lee, Dong-Seok;Lee, Dong-Wook;Kim, Su-Dong;Kim, Tae-June;Yoo, Ji-Sang
    • Journal of Broadcast Engineering
    • /
    • v.14 no.3
    • /
    • pp.366-377
    • /
    • 2009
  • In this paper, we implement the real-time system which extracts 3-dimensional coordinates from right and left images captured by a stereo camera and provides users with reality through a virtual space operated by the 3-dimensional coordinates. In general, all pixels in correspondence region are compared for the disparity estimation. However, for a real time process, the central coordinates of the correspondence region are only used in the proposed algorithm. In the implemented system, 3D coordinates are obtained by using the depth information derived from the estimated disparity and we set user's hand as a region of interest(ROI). After user's hand is detected as the ROI, the system keeps tracking a hand's movement and generates a virtual space that is controled by the hand. Experimental results show that the implemented system could estimate the disparity in real -time and gave the mean-error less than 0.68cm within a range of distance, 1.5m. Also It had more than 90% accuracy in the hand recognition.

Presentation control of a computer using hand motion identification rules (손동작 식별 규칙을 이용한 컴퓨터의 프레젠테이션 제어)

  • Lee, Kyu-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.9
    • /
    • pp.1172-1178
    • /
    • 2018
  • A system that control computer presentations by using the hand motion recognition and identification is proposed. The system recognizes and identifies various types of motion in hand motion, controlls the presentation without additional control devices. To recognize hand movements, it performs a face and hand region detection. Facial area is detected using Haar classifier and hand region is extracted according to skin color information on HSV color model. The face area is used to determine the beginning and end of hand gestures, the size and direction of motion. It recognizes various hand gestures and uses them to control computer presentations according to the hand motion identification rules that are proposed and set horizontal and vertical axes from the face area. It is confirmed that 97.2% recognition rate is obtained in about 1200 hand motion recognition experiments and the proposed algorithm is valid in presentation control.