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Abstract

The tolcrance approach to the sensitivity analy-
sis in linear programming considers simultaneous
and independent variations in the coefficients of
the objective function or of the right-hand side
terms and gives a region in which the coefficients
and terms can be changed and still the current
optimal basis B for the original problem remains
as an optimal basis for the perturbed problem. In
this paper we describe a procedure that expands a
region S obtained by the tolerance approach into
a larger region R, so that more variations in the
objective function coefficients or the right-hand
side terms are permissible.

1 Introduction

Suppose that the following linear programming
has been solved and that B is the associated op-
timal basis produced by the simplex inethod.

minimize ¢’r. st. Az =b. z >0. (1)

Suppose that one alters the coefficients of the
objective function ¢ or the right-hand side terms
bin (1). A question is how much can one change
themn so that the current optimal basis remains
optimal. Usually, the “ordinary” sensitivity anal-
vsis deals perturbations with one coefficient or
one term at a time[l].

The tolerance approach{4] considers simultane-
ous and independent variations in the coefficients
of the objective function or of the right-hand
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side terms and produces a region S within which
the coefficients or right-hand side terms can be
changed and still keeps the same optimal basis
intact.

The purpose of this paper is to describe a tech-
nique for expanding the region S into a larger
region R such that S C R.

2 An Expansion Technique

Here we pose the following problem: Given a
polytope P defined by the following set of inequal-
ities,

Zag,z, <b; for i=1,....m

1=1

with at least one interior point y° in P and m >
n, we would like to find a specific region R with
y° € R as large as possible such that R C P. An
approach would consist of finding an S contained
in P and then we expand S as much as possible
into R; of course, y° must be in S. Note that
since y° is an interior point, Ay® < b.

2.1 Computing a Region S

By denoting the above polytope as Az < b, we
want to find an a such that 4(y° + a) < b. This
can be written as da < b— Ay® = b, ie..

n

Za,,a,ﬁi)g for 1=1,...,m (2)

j=1

Note that b; is the ith component of b and each
b; > 0 since y° is an interior point. To find a suit-
able a, we compute a, > 0 as the largest value
such that so long as —a. < a; < a., the inequal-
ities in (2) should be satisfied. For any & > 0.
the largest that the left-hand side in (2) can ever
get subject to —a@ < a; < &, j=1,...,nis
(3=7=1 | 4ij )@ for each i. Hence, o, = max{a >

—549—



0: Z;‘:l | aij | & < b} foreachi=1,...,m. If
b

;=,l“-1|
a, = min{g1,32.....Bm} (3)

This computation is done based on the Tcheby-
cheff norm, and see [4] for its application on
the development of the tolerence approach. If
we let each component of a_be a.. le, a =

we let 3; = fori=1..... m, then

7 T ,a.)T, then Aa < band
§ =]ty — w95 + ] (4)
=1

will be contained in P with y° € S. To illustrate
this point, consider the following example whose
graph is given in Figure 1.

Example 1: —2z1+22 < 2
oi4+z < 3 (5)
4z; — 512, < 20
-z < 2

First, we let y° = (2.0). Then, Aa < b—Ay° =b

becomes

—2a1+a; < 6
ayt+oz £ 1 (6)
4y —B5a, < 12
—az < 2
and o® = a, = min{ A = 5.3 = 3.83 =
123, =2} = 1. The range of 5 = [1.5,2.5] x
[~0.5,0.5] and its region is given in Figure 1, the

dotted square.

2.2 Expansion of Region S

Next. we discuss an expansion R of § such that
S C R C P. The expansion can be done as many
times as possible by repeating the above steps.
Upon obtaining ay, we suppose that an fth in-
equality in (6) becomes tight(if more than one,
choose arbitrarily), i.e.,

lan Jal+ e las+ -+lamlal = be (7)

We will find a point z = (51.22,...,2n) be-
longing to the boundary of the ¢th inequality and
which becomes a corner point(vertex) of S as fol-
lows.

Proposition 1 If o% and S are obtained by (3)
and (4). respectively. and £h inequality in (6) be-
comes tight, then a point z = (z1,22...., zn) be-
longing to the boundary of the (ih inequality of
(5) and which becomes a corner point(zverter) of
S s given by

, = y;’+a‘: if ag; 20
I yy =at if ay <0,

In Example 1, for y° = (2.0). we have £ = 2
and af = Since a2y > 0 and azp > 0, we
add  both to y} and y$ to obtain z = (2.5,0.5).
This point belongs to the boundary of the second
inequality of Example 1 (see Figure 1). Then we
consider a direction eminating from the point z
and passing through the point y°. and determine
a point y! in P as follows:

(M

v =y"+ (" —3)

Note that the distance between the points z and

y°, ¥° and y' are the same. In example 1, y* =
(1.5,-0.5) (see Figure 1).

Now, we repeat the procedure given in section
2.1 by starting at y*, i.e., we replace y° by y!. For
y' = (1.5,-0.5), b = (5.5.2.0, 115, 1.5). Then we
calculate ol as in (3). At this point one of the
two possible cases can occur:

(I)  ai<2al
(II)  al=2a}

If (I) occurs, then no expansion can be done and

we must be satisfied with the region S. How-
ever, if (II) results, the region S can be expanded
into a larger region R that contains S. For
the above problem, a! = min{ 3, = 5—35,[32 =
%,,33 = %‘—5—.@1 = %5-} = 1. Note that al = 2a?
and hence it satisfies the second case (II). In
this case the same = is obtained. By comput-
ing y2? =y +(y' —=) = (0.5.-1.5). an expanded
region R can be obtained as

R =[0.5,2.5] x [~1.5,0.5]
This is from
R= H[vnin{zj,y;}.ma:c{z,.y;}] (8)
1=1

with i = 2. See Figure 1 below for the expansion
from S to R.

Figure 1.

N

I?2

e

L1

—550—



At y2. one can further test for a possible expan-
sion, but it can be easily shown that a? < 2al.
Hence, no further expansion can be done for this
problem.

2.3 An Expansion Algorithm

In this section the previous procedure is sum-
marized as a tolerance approach expansion algo-
rithm.

Algorithmm TAE

begin
Given a polytope P(Az < b), an interior
point y°. NMAX
STEP 0: i — 0
Form Aa < b+ 4y° = f(¥°)
Compute al, S at y°, and z.
as in {3).(4) and by Proposition 1
STEP 1: i —i+1
R—3S
Y= yx—l + (yx-l - :) .
Formn Aa < b+ Ay* = f(v*)
Compute o} as in (3)
STEP 2: If of < 204! ori = NMAX,
exit with R
If o) = 204! then
Compute § at y*
Go to STEP 1
end
end

3 The Tolerance Approach

In this section we consider the tolerance approach
proposed by Wendell[4]. Given a linear program

” n
min E c;zT;,s.t. E a;,z, = b, (9)
=1 1=1
for i=1....,m and z1,...,Zn 20,

we consider the following perturbed problem.

n n
!
min Z(CJ +a,e;)z;, st Z:a,-]z:J =b;, (10)
3=1 . 1=1
for t=1,...,m and zi,...,%Zn >0

We denote B an optimal basis of (9) and IR
the index set for the nonbasic variables. Let y; =

B~ !a; as usual. Then B remains an optimal basis
n (10) if

Z(CB; + “B.CIB. Vi, — (¢; +a;¢;) <0 (11)

=1

for each j € IR, where CB,aCIB,,-OtB. denote the
corresponding basic variable coefficients in the
vectors ¢.c .a. repectively. Note that if ¢ =
1(i.e.. each c;- = 1). then a becomes an additive
parameter and would represent additive variation

in the coefficients. And if ¢ = c. then a would
represent multiplicative variation in the objective
coefficient ¢. A maximum allowable tolerance on
the multiplicative variations in the objective coef-
ficients is denoted by a**'* and is given by

€ — 2

P IC'B.-y"J [ +1 C; |
jeIRrRt

mult i
a, = minimuin

where IRY = {j € IR: 3., |c33',y,-j |+ | c; |>
0}, see [1, 4] for more detail. A maximum allow-
able tolerance on the additive variations would
then be

C; — zy

N ETIRARY
jelIR*

add

a3%® = minimum

where IRt = {j € IR: Y.L, |yij | +]1]>0}.
For an illustration, consider the following prob-
lem given in [1].

minimize —2r; 4122 — 3
s.t. 1+ 2+ 23 <
—z1 + 21 < 4 (12)
z1,ZT2,T3 >

For this problem, the optimal simplex tableau is
given by

Z 3] I? be 23 T4 Is RHS

z {1 o -3 -1 -2 0 -12
z; | O 1 1 1 1 0 6
zs | 0 0 3 1 1 1 10

For the multiplicative variation, we get a™*!
= .min.imum{%, -13- 2} = ;. This implies that the
objective coefficients can vary within a tolerance
of 33% percent and the given basis will remain
optimal. The region is given by T' = [-%, 3] x
(2,4] x [-%.—24] x [0.0] x [0.0] Note that when
¢4 = ¢z = 0, no variation is permissible.
add _

-

For an additive variation, we obtain o
minimum{2,1,.4} = } and § = [-%,-3] x
2.4)x 4. 22 x (-1, 4] x [-3. 3]

4 Expansion Technique on
Additive Variation

In (11), we let ¢® = ¢ and c’B‘ = c;- = 1for all i

and j. Then, Y12 (ck, + a)yj — (¢} + ) < 0.
for each j € IR. This gives

Swwa-a<a - chyn =1 (13)
i=1 i=1
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for each j € IR. For the example in (12), the
"critical” region of the parameter is

oy —o2 + 3as < 3
ay -3 -+ s S 1
[« 3} —y + g S 2

where each column corresponds to the column of
L.

Followinb the algorithm TAE in section 2.3,
—-?,%,—4 1 1) Then, ¢! =
;7;,' —%,—- ,—-%) This gives
X h 2 X Ch A x (-4, 4)

af:.and = (

+(-2) =
-5 -3

]
X

2.4

i,

X

W~ o\-'-l
witn g,
W

—

S=[

To expand the region, we replace ¢® by ¢! in
(13). Then the right-hand side vector becomes
(4.2, 3). Again, o} = £ and note that (II) is sat-
isfied. Now, ¢ = ¢t +(ct—2) = (=3.0,0,-1,-1)
and trying to expand once more, the right-hand
side vector gives (6,4,3) and a? = 1. At this
point, note that a? < 2al. Hence, we stop the
procedure of the expansion. The regxon R is ob-
tained from (8), replacing y* by c?, as

R=1-3-21x [0, 31 3,0 x [-1, %] x[-1,3)

Next, for the expansion of the right-hand side
terms, we consider the following perturbed prob-
lem from (9):

min Zc,z,, s.t. Za”z’ =b.~+,‘3.~b:, (14)
=1 1=1
for i=1,..., ,m and zi,..., zn 2 0.

Let B be an optimal basis of (9), and the com-
ponents of B™" as Bj; Yfori,j=1,....m. Then,
B will be an optimal basm for the above perturbed
problem (14) if

ZB (b, +3;5,) 20, i=1,....m (15)

This can be rewritten as
Z(-B;‘b;m, <b, i=1...m (16)

i=1

where b = B~ 1b. By letting b; = 1 for each j
in (15) gives the additive variation, and the max-
imum allowable tolerances on the additive varia-
tion is given by

b]
Z;n:l | _Bx—;l l

i€ IBY,

qadd .
3.7 = minimum

where IBt = {je€IB:Y 1 | —-B{;l i> 0}.

For the problem in (12), b° = b = (6.4) and
the optimal basis and its inverse are

s[4 0] == 0 Y]

and the critical region of the parameter is

-3 < 6
-3 -5 £ 10

Following the algorithm TAE in section 2.3.
32 =5 and z = (1,—1). Then, b* = (11,9). This
gives S = [1.11] x [-1,9]. To expand the region.
we replace 5° by b' in (16). This gives 3! =10
and note that (II) is satisfied. Now, b* = (21. 19)
and R = [1.21] x {-1,19]. Replacing b° by % in
(16), we obtain 37 = 20 which also satisfies (II).
For this particular problem. this process can be
continued and the final expanded region R can be
given as

R =[1.400) x [—1, +0)

5 Concluding Remarks

While the tolerence approach is trying to find a
range for which objective function coefficients and
the right-hand side terms can be changed in a
“one-time” basis, the expansion method, if pos-
sible, is trying to expand the region as much as
possible and more than once from the result ob-
tained by the tolerence approach.

Further work includes expansion technique on
the multiplicative variations and implementation
of this technique on a set of more realistic prob-
lems.
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