• Title/Summary/Keyword: Hand region

Search Result 1,264, Processing Time 0.024 seconds

Color-Based Real-Time Hand Region Detection with Robust Performance in Various Environments (다양한 환경에 강인한 컬러기반 실시간 손 영역 검출)

  • Hong, Dong-Gyun;Lee, Donghwa
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.6
    • /
    • pp.295-311
    • /
    • 2019
  • The smart product market is growing year by year and is being used in many areas. There are various ways of interacting with smart products and users by inputting voice recognition, touch and finger movements. It is most important to detect an accurate hand region as a whole step to recognize hand movement. In this paper, we propose a method to detect accurate hand region in real time in various environments. A conventional method of detecting a hand region includes a method using depth information of a multi-sensor camera, a method of detecting a hand through machine learning, and a method of detecting a hand region using a color model. Among these methods, a method using a multi-sensor camera or a method using a machine learning requires a large amount of calculation and a high-performance PC is essential. Many computations are not suitable for embedded systems, and high-end PCs increase or decrease the price of smart products. The algorithm proposed in this paper detects the hand region using the color model, corrects the problems of the existing hand detection algorithm, and detects the accurate hand region based on various experimental environments.

Feature Point Extraction of Hand Region Using Vision (비젼을 이용한 손 영역 특징 점 추출)

  • Jeong, Hyun-Suk;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.2041-2046
    • /
    • 2009
  • In this paper, we propose the feature points extraction method of hand region using vision. To do this, first, we find the HCbCr color model by using HSI and YCbCr color model. Second, we extract the hand region by using the HCbCr color model and the fuzzy color filter. Third, we extract the exact hand region by applying labeling algorithm to extracted hand region. Fourth, after finding the center of gravity of extracted hand region, we obtain the first feature points by using Canny edge, chain code, and DP method. And then, we obtain the feature points of hand region by applying the convex hull method to the extracted first feature points. Finally, we demonstrate the effectiveness and feasibility of the proposed method through some experiments.

A Study on Hand Region Detection for Kinect-Based Hand Shape Recognition (Kinect 기반 손 모양 인식을 위한 손 영역 검출에 관한 연구)

  • Park, Hanhoon;Choi, Junyeong;Park, Jong-Il;Moon, Kwang-Seok
    • Journal of Broadcast Engineering
    • /
    • v.18 no.3
    • /
    • pp.393-400
    • /
    • 2013
  • Hand shape recognition is a fundamental technique for implementing natural human-computer interaction. In this paper, we discuss a method for effectively detecting a hand region in Kinect-based hand shape recognition. Since Kinect is a camera that can capture color images and infrared images (or depth images) together, both images can be exploited for the process of detecting a hand region. That is, a hand region can be detected by finding pixels having skin colors or by finding pixels having a specific depth. Therefore, after analyzing the performance of each, we need a method of properly combining both to clearly extract the silhouette of hand region. This is because the hand shape recognition rate depends on the fineness of detected silhouette. Finally, through comparison of hand shape recognition rates resulted from different hand region detection methods in general environments, we propose a high-performance hand region detection method.

Analysis of Face Direction and Hand Gestures for Recognition of Human Motion (인간의 행동 인식을 위한 얼굴 방향과 손 동작 해석)

  • Kim, Seong-Eun;Jo, Gang-Hyeon;Jeon, Hui-Seong;Choe, Won-Ho;Park, Gyeong-Seop
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.4
    • /
    • pp.309-318
    • /
    • 2001
  • In this paper, we describe methods that analyze a human gesture. A human interface(HI) system for analyzing gesture extracts the head and hand regions after taking image sequence of and operators continuous behavior using CCD cameras. As gestures are accomplished with operators head and hands motion, we extract the head and hand regions to analyze gestures and calculate geometrical information of extracted skin regions. The analysis of head motion is possible by obtaining the face direction. We assume that head is ellipsoid with 3D coordinates to locate the face features likes eyes, nose and mouth on its surface. If was know the center of feature points, the angle of the center in the ellipsoid is the direction of the face. The hand region obtained from preprocessing is able to include hands as well as arms. For extracting only the hand region from preprocessing, we should find the wrist line to divide the hand and arm regions. After distinguishing the hand region by the wrist line, we model the hand region as an ellipse for the analysis of hand data. Also, the finger part is represented as a long and narrow shape. We extract hand information such as size, position, and shape.

  • PDF

Hand Region Detection and hand shape classification using Hu moment and Back Projection (역 투영과 휴 모멘트를 이용한 손영역 검출 및 모양 분류)

  • Shin, Jae-Sun;Jang, Dae-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.911-914
    • /
    • 2011
  • Detecting Hand Region is essencial technology to providing User based interface and many research has been continue. In this paper will propose Hand Region Detection method by using HSV space based on Back Projection and Hand Shape Recognition using Hu Moment. By using Back Projection, I updated reliability on Hand Region Detection by Back Projection method and, Confirmed Hand Shape could be recognized through Hu moment.

  • PDF

Implement of Hand Gesture Interface using Ratio and Size Variation of Gesture Clipping Region (제스쳐 클리핑 영역 비율과 크기 변화를 이용한 손-동작 인터페이스 구현)

  • Choi, Chang-Yur;Lee, Woo-Beom
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.121-127
    • /
    • 2013
  • A vision based hand-gesture interface method for substituting a pointing device is proposed in this paper, which is used the ratio and size variation of Gesture Region. Proposed method uses the skin hue&saturation of the hand region from the HSI color model to extract the hand region effectively. This method can remove the non-hand region, and reduces the noise effect by the light source. Also, as the computation quantity is reduced by detecting not the static hand-shape recognition, but the ratio and size variation of hand-moving from the clipped hand region in real time, more response speed is guaranteed. In order to evaluate the performance of the our proposed method, after applying to the computerized self visual acuity testing system as a pointing device. As a result, the proposed method showed the average 86% gesture recognition ratio and 87% coordinate moving recognition ratio.

The Hand Region Acquistion System for Gesture-based Interface (제스처 기반 인터페이스를 위한 손영역 획득 시스템)

  • 양선옥;고일주;최형일
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.4
    • /
    • pp.43-52
    • /
    • 1998
  • We extract a hand region by using color information, which is an important feature for human vision to distinguish objects. Because pixel values in images are changed according to the luminance and lighting source, it is difficult to extract a hand region exactly without previous knowledge. We generate a hand skin model at learning stage, and extract a hand region from images by using the model. We also use a Kalman filter to consider changes of pixel values in a hand skin model. A Kalman filter restricts a search area for extracting a hand region at next frame also. The validity of the proposed method is proved by implementing the hand-region acquisition module.

  • PDF

Region-growing based Hand Segmentation Algorithm using Skin Color and Depth Information (피부색 및 깊이정보를 이용한 영역채움 기반 손 분리 기법)

  • Seo, Jonghoon;Chae, Seungho;Shim, Jinwook;Kim, Hayoung;Han, Tack-Don
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.9
    • /
    • pp.1031-1043
    • /
    • 2013
  • Extracting hand region from images is the first part in the process to recognize hand posture and gesture interaction. Therefore, a good segmenting method is important because it determines the overall performance of hand recognition systems. Conventional hand segmentation researches were prone to changing illumination conditions or limited to the ability to detect multiple people. In this paper, we propose a robust technique based on the fusion of skin-color data and depth information for hand segmentation process. The proposed algorithm uses skin-color data to localize accurate seed location for region-growing from a complicated background. Based on the seed location, our algorithm adjusts each detected blob to fill up the hole region. A region-growing algorithm is applied to the adjusted blob boundary at the detected depth image to obtain a robust hand region against illumination effects. Also, the resulting hand region is used to train our skin-model adaptively which further reduces the effects of changing illumination. We conducted experiments to compare our results with conventional techniques which validates the robustness of the proposed algorithm and in addition we show our method works well even in a counter light condition.

Hand Gesture Recognition using Optical Flow Field Segmentation and Boundary Complexity Comparison based on Hidden Markov Models

  • Park, Sang-Yun;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.4
    • /
    • pp.504-516
    • /
    • 2011
  • In this paper, we will present a method to detect human hand and recognize hand gesture. For detecting the hand region, we use the feature of human skin color and hand feature (with boundary complexity) to detect the hand region from the input image; and use algorithm of optical flow to track the hand movement. Hand gesture recognition is composed of two parts: 1. Posture recognition and 2. Motion recognition, for describing the hand posture feature, we employ the Fourier descriptor method because it's rotation invariant. And we employ PCA method to extract the feature among gesture frames sequences. The HMM method will finally be used to recognize these feature to make a final decision of a hand gesture. Through the experiment, we can see that our proposed method can achieve 99% recognition rate at environment with simple background and no face region together, and reduce to 89.5% at the environment with complex background and with face region. These results can illustrate that the proposed algorithm can be applied as a production.

Real-time Hand Region Detection based on Cascade using Depth Information (깊이정보를 이용한 케스케이드 방식의 실시간 손 영역 검출)

  • Joo, Sung Il;Weon, Sun Hee;Choi, Hyung Il
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.10
    • /
    • pp.713-722
    • /
    • 2013
  • This paper proposes a method of using depth information to detect the hand region in real-time based on the cascade method. In order to ensure stable and speedy detection of the hand region even under conditions of lighting changes in the test environment, this study uses only features based on depth information, and proposes a method of detecting the hand region by means of a classifier that uses boosting and cascading methods. First, in order to extract features using only depth information, we calculate the difference between the depth value at the center of the input image and the average of depth value within the segmented block, and to ensure that hand regions of all sizes will be detected, we use the central depth value and the second order linear model to predict the size of the hand region. The cascade method is applied to implement training and recognition by extracting features from the hand region. The classifier proposed in this paper maintains accuracy and enhances speed by composing each stage into a single weak classifier and obtaining the threshold value that satisfies the detection rate while exhibiting the lowest error rate to perform over-fitting training. The trained classifier is used to classify the hand region, and detects the final hand region in the final merger stage. Lastly, to verify performance, we perform quantitative and qualitative comparative analyses with various conventional AdaBoost algorithms to confirm the efficiency of the hand region detection algorithm proposed in this paper.