• Title/Summary/Keyword: Hand Gesture Interface

Search Result 115, Processing Time 0.022 seconds

User Needs of Three Dimensional Hand Gesture Interfaces in Residential Environment Based on Diary Method (주거 공간에서의 3차원 핸드 제스처 인터페이스에 대한 사용자 요구사항)

  • Jeong, Dong Yeong;Kim, Heejin;Han, Sung H.;Lee, Donghun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.5
    • /
    • pp.461-469
    • /
    • 2015
  • The aim of this study is to find out the user's needs of a 3D hand gesture interface in the smart home environment. To find out the users' needs, we investigated which object the users want to use with a 3D hand gesture interface and why they want to use a 3D hand gesture interface. 3D hand gesture interfaces are studied to be applied to various devices in the smart environment. 3D hand gesture interfaces enable the users to control the smart environment with natural and intuitive hand gestures. With these advantages, finding out the user's needs of a 3D hand gesture interface would improve the user experience of a product. This study was conducted using a diary method to find out the user's needs with 20 participants. They wrote the needs of a 3D hand gesture interface during one week filling in the forms of a diary. The form of the diary is comprised of who, when, where, what and how to use a 3D hand gesture interface with each consisting of a usefulness score. A total of 322 data (209 normal data and 113 error data) were collected from users. There were some common objects which the users wanted to control with a 3D hand gesture interface and reasons why they want to use a 3D hand gesture interface. Among them, the users wanted to use a 3D hand gesture interface mostly to control the light, and to use a 3D hand gesture interface mostly to overcome hand restrictions. The results of this study would help develop effective and efficient studies of a 3D hand gesture interface giving valuable insights for the researchers and designers. In addition, this could be used for creating guidelines for 3D hand gesture interfaces.

Virtual Block Game Interface based on the Hand Gesture Recognition (손 제스처 인식에 기반한 Virtual Block 게임 인터페이스)

  • Yoon, Min-Ho;Kim, Yoon-Jae;Kim, Tae-Young
    • Journal of Korea Game Society
    • /
    • v.17 no.6
    • /
    • pp.113-120
    • /
    • 2017
  • With the development of virtual reality technology, in recent years, user-friendly hand gesture interface has been more studied for natural interaction with a virtual 3D object. Most earlier studies on the hand-gesture interface are using relatively simple hand gestures. In this paper, we suggest an intuitive hand gesture interface for interaction with 3D object in the virtual reality applications. For hand gesture recognition, first of all, we preprocess various hand data and classify the data through the binary decision tree. The classified data is re-sampled and converted to the chain-code, and then constructed to the hand feature data with the histograms of the chain code. Finally, the input gesture is recognized by MCSVM-based machine learning from the feature data. To test our proposed hand gesture interface we implemented a 'Virtual Block' game. Our experiments showed about 99.2% recognition ratio of 16 kinds of command gestures and more intuitive and user friendly than conventional mouse interface.

A Framework for Designing Closed-loop Hand Gesture Interface Incorporating Compatibility between Human and Monocular Device

  • Lee, Hyun-Soo;Kim, Sang-Ho
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.4
    • /
    • pp.533-540
    • /
    • 2012
  • Objective: This paper targets a framework of a hand gesture based interface design. Background: While a modeling of contact-based interfaces has focused on users' ergonomic interface designs and real-time technologies, an implementation of a contactless interface needs error-free classifications as an essential prior condition. These trends made many research studies concentrate on the designs of feature vectors, learning models and their tests. Even though there have been remarkable advances in this field, the ignorance of ergonomics and users' cognitions result in several problems including a user's uneasy behaviors. Method: In order to incorporate compatibilities considering users' comfortable behaviors and device's classification abilities simultaneously, classification-oriented gestures are extracted using the suggested human-hand model and closed-loop classification procedures. Out of the extracted gestures, the compatibility-oriented gestures are acquired though human's ergonomic and cognitive experiments. Then, the obtained hand gestures are converted into a series of hand behaviors - Handycon - which is mapped into several functions in a mobile device. Results: This Handycon model guarantees users' easy behavior and helps fast understandings as well as the high classification rate. Conclusion and Application: The suggested framework contributes to develop a hand gesture-based contactless interface model considering compatibilities between human and device. The suggested procedures can be applied effectively into other contactless interface designs.

Study on User Interface for a Capacitive-Sensor Based Smart Device

  • Jung, Sun-IL;Kim, Young-Chul
    • Smart Media Journal
    • /
    • v.8 no.3
    • /
    • pp.47-52
    • /
    • 2019
  • In this paper, we designed HW / SW interfaces for processing the signals of capacitive sensors like Electric Potential Sensor (EPS) to detect the surrounding electric field disturbance as feature signals in motion recognition systems. We implemented a smart light control system with those interfaces. In the system, the on/off switch and brightness adjustment are controlled by hand gestures using the designed and fabricated interface circuits. PWM (Pulse Width Modulation) signals of the controller with a driver IC are used to drive the LED and to control the brightness and on/off operation. Using the hand-gesture signals obtained through EPS sensors and the interface HW/SW, we can not only construct a gesture instructing system but also accomplish the faster recognition speed by developing dedicated interface hardware including control circuitry. Finally, using the proposed hand-gesture recognition and signal processing methods, the light control module was also designed and implemented. The experimental result shows that the smart light control system can control the LED module properly by accurate motion detection and gesture classification.

Implementation of Gesture Interface for Projected Surfaces

  • Park, Yong-Suk;Park, Se-Ho;Kim, Tae-Gon;Chung, Jong-Moon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.378-390
    • /
    • 2015
  • Image projectors can turn any surface into a display. Integrating a surface projection with a user interface transforms it into an interactive display with many possible applications. Hand gesture interfaces are often used with projector-camera systems. Hand detection through color image processing is affected by the surrounding environment. The lack of illumination and color details greatly influences the detection process and drops the recognition success rate. In addition, there can be interference from the projection system itself due to image projection. In order to overcome these problems, a gesture interface based on depth images is proposed for projected surfaces. In this paper, a depth camera is used for hand recognition and for effectively extracting the area of the hand from the scene. A hand detection and finger tracking method based on depth images is proposed. Based on the proposed method, a touch interface for the projected surface is implemented and evaluated.

Hand Gesture Interface Using Mobile Camera Devices (모바일 카메라 기기를 이용한 손 제스처 인터페이스)

  • Lee, Chan-Su;Chun, Sung-Yong;Sohn, Myoung-Gyu;Lee, Sang-Heon
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.5
    • /
    • pp.621-625
    • /
    • 2010
  • This paper presents a hand motion tracking method for hand gesture interface using a camera in mobile devices such as a smart phone and PDA. When a camera moves according to the hand gesture of the user, global optical flows are generated. Therefore, robust hand movement estimation is possible by considering dominant optical flow based on histogram analysis of the motion direction. A continuous hand gesture is segmented into unit gestures by motion state estimation using motion phase, which is determined by velocity and acceleration of the estimated hand motion. Feature vectors are extracted during movement states and hand gestures are recognized at the end state of each gesture. Support vector machine (SVM), k-nearest neighborhood classifier, and normal Bayes classifier are used for classification. SVM shows 82% recognition rate for 14 hand gestures.

Implementation of Hand-Gesture Interface to manipulate a 3D Object of Augmented Reality (증강현실의 3D 객체 조작을 위한 핸드-제스쳐 인터페이스 구현)

  • Jang, Myeong-Soo;Lee, Woo-Beom
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.4
    • /
    • pp.117-123
    • /
    • 2016
  • A hand-gesture interface to manipulate a 3D object of augmented reality is implemented by recognizing the user hand-gesture in this paper. Proposed method extracts the hand region from real image, and creates augmented object by hand marker recognized user hand-gesture. Also, 3D object manipulation corresponding to user hand-gesture is performed by analyzing a hand region ratio, a numbet of finger and a variation ratio of hand region center. In order to evaluate the performance of the our proposed method, after making a 3D object by using the OpenGL library, all processing tasks are implemented by using the Intel OpenCV library and C++ language. As a result, the proposed method showed the average 90% recognition ratio by the user command-modes successfully.

A Hierarchical Bayesian Network for Real-Time Continuous Hand Gesture Recognition (연속적인 손 제스처의 실시간 인식을 위한 계층적 베이지안 네트워크)

  • Huh, Sung-Ju;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.12
    • /
    • pp.1028-1033
    • /
    • 2009
  • This paper presents a real-time hand gesture recognition approach for controlling a computer. We define hand gestures as continuous hand postures and their movements for easy expression of various gestures and propose a Two-layered Bayesian Network (TBN) to recognize those gestures. The proposed method can compensate an incorrectly recognized hand posture and its location via the preceding and following information. In order to vertify the usefulness of the proposed method, we implemented a Virtual Mouse interface, the gesture-based interface of a physical mouse device. In experiments, the proposed method showed a recognition rate of 94.8% and 88.1% for a simple and cluttered background, respectively. This outperforms the previous HMM-based method, which had results of 92.4% and 83.3%, respectively, under the same conditions.

HOG-HOD Algorithm for Recognition of Multi-cultural Hand Gestures (다문화 손동작 인식을 위한 HOG-HOD 알고리즘)

  • Kim, Jiye;Park, Jong-Il
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1187-1199
    • /
    • 2017
  • In recent years, research about Natural User Interface (NUI) has become focused because NUI system can give natural feelings for users in virtual reality. Most important thing in NUI system is how to communicate with the computer system. There are many things to interact with users such as speech, hand gestures, body actions. Among them, hand gesture is suitable for the purpose of NUI because people often use a relatively high frequency in daily life and hand gesture have meaning only by itself. This hand gestures called multi-cultural hand gesture and we proposed the method to recognize this kind of hand gestures. Proposed method is composed of Histogram of Oriented Gradients (HOG) used for hand shape recognition and Histogram of Oriented Displacements (HOD) used for hand center point trajectory recognition.

Implement of Hand Gesture Interface using Ratio and Size Variation of Gesture Clipping Region (제스쳐 클리핑 영역 비율과 크기 변화를 이용한 손-동작 인터페이스 구현)

  • Choi, Chang-Yur;Lee, Woo-Beom
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.121-127
    • /
    • 2013
  • A vision based hand-gesture interface method for substituting a pointing device is proposed in this paper, which is used the ratio and size variation of Gesture Region. Proposed method uses the skin hue&saturation of the hand region from the HSI color model to extract the hand region effectively. This method can remove the non-hand region, and reduces the noise effect by the light source. Also, as the computation quantity is reduced by detecting not the static hand-shape recognition, but the ratio and size variation of hand-moving from the clipped hand region in real time, more response speed is guaranteed. In order to evaluate the performance of the our proposed method, after applying to the computerized self visual acuity testing system as a pointing device. As a result, the proposed method showed the average 86% gesture recognition ratio and 87% coordinate moving recognition ratio.