• Title/Summary/Keyword: Hamiltonian diffeomorphism

Search Result 4, Processing Time 0.015 seconds

NORMALIZATION OF THE HAMILTONIAN AND THE ACTION SPECTRUM

  • OH YONG-GEUN
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.65-83
    • /
    • 2005
  • In this paper, we prove that the two well-known natural normalizations of Hamiltonian functions on the symplectic manifold ($M,\;{\omega}$) canonically relate the action spectra of different normalized Hamiltonians on arbitrary symplectic manifolds ($M,\;{\omega}$). The natural classes of normalized Hamiltonians consist of those whose mean value is zero for the closed manifold, and those which are compactly supported in IntM for the open manifold. We also study the effect of the action spectrum under the ${\pi}_1$ of Hamiltonian diffeomorphism group. This forms a foundational basis for our study of spectral invariants of the Hamiltonian diffeomorphism in [8].

GRAPHICALITY, C0 CONVERGENCE, AND THE CALABI HOMOMORPHISM

  • Usher, Michael
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.2043-2051
    • /
    • 2017
  • Consider a sequence of compactly supported Hamiltonian diffeomorphisms ${\phi}_k$ of an exact symplectic manifold, all of which are "graphical" in the sense that their graphs are identified by a Darboux-Weinstein chart with the image of a one-form. We show by an elementary argument that if the ${\phi}_k$ $C^0$-converge to the identity, then their Calabi invariants converge to zero. This generalizes a result of Oh, in which the ambient manifold was the two-disk and an additional assumption was made on the Hamiltonians generating the ${\phi}_k$. We discuss connections to the open problem of whether the Calabi homomorphism extends to the Hamiltonian homeomorphism group. The proof is based on a relationship between the Calabi invariant of a $C^0$-small Hamiltonian diffeomorphism and the generalized phase function of its graph.

A NOTE ON HOFER'S NORM

  • Cho, Yong-Seung;Kwak, Jin-Ho;Yoon, Jin-Yue
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.277-282
    • /
    • 2002
  • We Show that When ($M,\;\omega$) is a closed, simply connected, symplectic manifold for all $\gamma\;\in\;\pi_1(Ham(M),\;id)$ the following inequality holds: $\parallel\gamma\parallel\;{\geq}\;sup_{\={x}}\;|A(\={x})|,\;where\;\parallel\gamma\parallel$ is the coarse Hofer's norm, $\={x}$ run over all extensions to $D^2$ of an orbit $x(t)\;=\;{\varphi}_t(z)$ of a fixed point $z\;\in\;M,\;A(\={x})$ the symplectic action of $\={x}$, and the Hamiltonian diffeomorphisms {${\varphi}_t$} of M represent $\gamma$.

ON ACTION SPECTRUM BUNDLE

  • Cho, Yong-Seung;Yoon, Jin-Yue
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.741-751
    • /
    • 2001
  • In this paper when $(M, \omega)$ is a compact weakly exact symplectic manifold with nonempty boundary satisfying $c_1|{\pi}_2(M)$ = 0, we construct an action spectrum bundle over the group of Hamil-tonian diffeomorphisms of the manifold M generated by the time-dependent Hamiltonian vector fields, whose fibre is nowhere dense and invariant under symplectic conjugation.

  • PDF