• Title/Summary/Keyword: Hamiltonian Chaos

Search Result 3, Processing Time 0.022 seconds

Global Bifurcations and Chaos Via Breaking of KAM Tori of an Harmonically Excited Imperfect Circular Plate

  • Samoylenko, S.B.;Lee, W.K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.419-422
    • /
    • 2005
  • Global bifurcations and chaos in modal interactions of an imperfect circular plate with one-to-one internal resonance are investigated. The case of primary resonance, in which an excitation frequency is near natural frequencies, is considered. The damping force is not included in the analysis. The renormalization-group technique for KAM tori is used to obtain the criteria for large-scale stochasticity in the system.

  • PDF

On the Subharmonic Melnikov Analysis and Chaotic Behaviors in a 2-DOF Hamiltonian System (2자유도 Hamiltonian계의 Subharmonic Melnikov 해석과 혼돈양상에 대한 연구)

  • 박철희;이근수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.77-83
    • /
    • 1993
  • In this paper, the dynamics of a 2-DOF not 1:1 resonant Hamiltonian system are studied. In the first part of the work, the behaviors of special periodic orbits called normal modes are examined by means of the harmonic balance method and their approximate stability ar analyzed by using the Synge's concept named stability in the kinematico-statical sense. Secondly, the global dynamics of the system for low and high energy are studied in terms of a perturbation analysis and Poincare' maps. In this part, one can see that the unstable normal mode generates chaotic motions resulting from the transverse intersections of the stable and unstable manifolds. Although there exist analytic methods for proving the existence of infinitely many periodic orbits, chaos, they cannot be applied in our case and thus, the Poincare' maps constructed by direct numerical integrations are utilized fot detecting chaotic motions. In the last part of the work, the existence of arbitrarily many periodic orbits of the system are proved by using a subharmonic Melnikov's method. We also study the possibility of the breakdown of invariant KAM tori only when h>h$_{0}$ (h$_{0}$:bifurcating energy) and investigate the generality of the destruction phenomena of the rational tori in the systems perturbed by stiffness and inertial coupling.

  • PDF

Lagrangian Chaos and Dispersion of Passive Particles on the Ripple Bed (해저 파문에서의 입자의 라그란지적 혼돈 및 확산)

  • 김현민;서용권
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.13-24
    • /
    • 1993
  • The dispersion in the oscillatory flow generated by gravitational waves above the spatially periodic repples is studied. The steady parts of equations describing the orbit of the passive particle in a two dimensional field are assumed to be simply trigonometric functions. From the view point of nonlinear dynamics, the motion of the particle is chaotic under externally time-periodic perturbations which come from the wave motion. Two cases considered here are; (i) shallow water, and (ii) deep water approximation.

  • PDF