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On the Subharmonic Melnikov Analysis and Chaotic Behaviors

in a 2-DOF Hamiltonian System

(Chol-Hui Pak, Keun-Soo Lee)

1. Introduction

In this paper, the dynamics of a 2-DOF not 1:1 resonant

Hamiltonian system are studied. In the first part of the

work, the behaviors of special periodic orbits called normal
modes are examined by means of the harmonic balance
mathod and their approximate stability are analyzed by
using the Synge's concept named stability in the
kinematico-statical  sense[1,2].  Secondly, the global
dynamics of the system for low and high energy are
studied in terms of a perturbation analysis and Poincare’
maps(3]. In this part, one can see that the unstable normal
mode generates chaotic motions resulting from the
transverse intersections of the stable and unstable
manifolds. Although there exist analytic methods for
proving the existence of infinitely many periodic orbits,
chaos, they cannot be applied in our case and thus, the
Poincare’ maps constructed by direct numerical
integrations are utilized fot detecting chaotic motions. In
the last part of the work, the existence of arbitrarily many
periodic orbits of the system are proved by using a
subharmonic Melnikov’s method[4]. We also study the
possibility of the breakdown of invariant KAM tori(5] only
when h>hy (hobifurcating energy) and investigate the
generality of the destruction phenomena of the rational tori
in the systems perturbed by stiffness and inertial coupling.

2. Nonlinear Normal Mode Vibrations

A normal mode is periodic motion of the system which
passes through the origin and which has two rest points.
And the formal definition of normal mode was first
introduced by Rosengerg{6] who utilize the concept
"vibrations in unison”. Consider the n-DOF conservative
systems and the following equations of motion :

x}+%§:‘)=o L i=12 ~,n (1)
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T ARART A AT} Dt

Definition (R i 1966)
A normal mode is a any solution of the equation (1) which
is a vibration in unison

If the modal curve is straight, then a normal mode is said
to be similar and nonsimilar if curved. The concept of
normal modes have very significant rheaning since the
resonance in forced vabrations occurs when the forcing
frequency lies to the natural frequencies and the system
vibrates in normal modes in the neighborhood of
resonance(7]. In this section, the behaviors of approximate
normal modes are investigated by using the harmonic
balance method. This method is applicable to strongly
nonlinear system and only first term approximation of
harmonics in the Fourier series expansion gives a good
result. Thus the normal modes will be approximated by
considering just first term of harmonics in this section.
Complete explanation can be found in [7]. Now consider
the following equations of motion.

- 3
X1+ x1 + x1 + di(xi-x2) + Ba(xi-x3)®

L[}
<

(2)

- 3
Xz ¥ x2 + x2 - dilx1-x2) - Bal(x1-x2)°

"
[~

where the kinetic and potential energy is given by

+ x3)
(3)

(xf+xd)+ —411'()6‘1’~*x3)+ %(xx—xz)2+ %—(n-n)"

Let us call the above equation system(I). By assuming
that the solution is the first term in the Fourier series,

x = Asinet, y = Bsinot (4)

the following equation is obtained :
a1(A% B+ 3 (285~ 1( 4B~ 4°) + - po(4%- B4 =0 (5)

Because the modal curves are assumed to be straight ,
Eq.(5) can be transformed into polar coordinate through :

A = rcos8, B = rsinf (6)

_77—.



Fig.l Strutt Chart (2,=0.5, B3=0.1), b : bifurcation point

where B is the angle between modal curve and x-axis
and r is the amplitude of normal mode. Then,

fo) + gpr? = 0 (7
where
p = tanb
£p) = a(1-ph (8)

gp) = 3{(1-2n1-pY + B(1-ph)

For sufficiently small energy, there are two similar normal
modes.

p +1 : Symmetric NM (x = y) )

(9
p = -1 Anti-symmetric NM (x = -y)
And for large energy, from g(p) = 0, there may exist two
other normal modes which are bifurcating out from x = y ,
or x = -y. From g{p) = 0, the values of p corresponding
to the bifurcating modes can be evaluated as follows :

-1+ 285 + (1 - 482

_ 1
p= 23 » < (0

Thus, one can see that B3 = 1/4 is a bifurcating point for
sufficiently large energy. In fact, these bifurcating two
modes are nonsimilar normal modes but it was shown that
the bifurcating nonsimilar modes are close to straight line
(similar mode) by Anand|[8].

The approximate stability of the above normal modes can
be analyzed via Synge’s stability concept[l,?]. Synge, in a
paper of 1926, has introduced the concept of stability called
the stability in the kinematico-statical sense. This stability
concept is equivalent to the orbital stability, as usual in
the phase space. The governing equation for the stability
can be oatained as follows :

B* + (8 + mcost)B = O (11)

where 8§ = B2/B1 , W = By/B; and where
B; = 4*A%+BY

Bz = 20,AB+3A’B? + (1+a;)(A%+B?)

(12)
+ S ps(a*+B*-2478Y

B; = -{34’B" + %53<A4+B‘—2AZBZ)}

The above equation is well known mathieu equation and
the strutt chart for Bs=0.1 is plotted at Fig.l. Indeed, the
anti-symmetric mode is unstable and both symmetric and
bifurcating modes are stable for the case B3 < 1/4 as the
energy increases. The bifurcating energy A in this case
can be easily calculated and the value is by = 1.73.

3. Global Dynamics

3.1 Perturbation Analysis

In this section, we use the two variable expansion
perturbation method[9] to study the dynamics of the
system for low energies. In order for the perturbation
method to be valid, one must assume that the nonlinear
system neighbors a linear one. Thus the system under
consideration is slightly modified of the following form :

- 3
X1+ x1 + exi + eai(xi-x2) + eBs(xi-xz)

_ (13)
X2 + xz + €x3 — eailxi~xz) - eBalx1-x2)?

n
<

where €<1 is a small parameter.

Note that when € = 0, the system is in 1:1 resonance

and degenerates into two linear oscillators. Since the
system have the two similar normal modes before

bifurcation, one can replace x; and x2 by new coordinate

X, ¥ as follows :

X = x1+ Xz, ¥y = x1- X2 (14)
Then, Eq.(13) becomes
X+ x+ E(%x3+%xy2) =0

(15)

y + (1+ed)y + s{(2l33+-41'1-)y3 + -?szy} =0

and where A = 2a; playing a role of detuning parameter.
Next we replace t as independent variables :

C=1t, n=ct (16)
Then, the following averaged equations are obtained :
_dR _
an 0
- - -2 Rsin2esiny
(17)
& - oS-SR Lsin Lt cos)

- —g’z—RgcosW( cos9+2)
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The polar transformations are used for deriving the above
equations. The first equation indicates that the total energy
of the system is conserved during free vibration and this
energy conservation holds only for this order of
approximation.

Ri + R: = R* = const. (18)

The Eq.(17) can be integrated exactly[10] and the first
integral of the motion is :

K(0,0) = (“—I?T—%Bs)cosz‘l'
+(1i533-—6347-'%cos?m)cos4w (19)

+ —532— cos’ = constant.

Thus, for given parameters, the level curves of the
integral (19) may be plotted on the ¥ - ¢ phase plane.
The line ¥ = 0, n/2 are excluded since on these lines R»
and R; vanishes and 01, 62(6,-8,=¢) are not defined. In
fact, these lines correspond to the x-mode(y = 0), or
y-mode(x = 0), and in the original system they indicate
symmetric(xt = x2) and anti-symmetric(xy = -xz) modes.
The level curves are plotted in Fig.2 for the specific
parameter value. Fig2 shows that the stability of
symmetric mode is stable, since it appears to be
swrrounded by closed curves. And the two bifurcating
modes are stable since they also appear as centers. Fixed
points corresponding to the bifurcating modes are :

2 o).

{ cos"( 4ps + 8M3R® ) -

W,0) = [—%-cos'l(
—%— 283 -1

-

w
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<

-

:

)
ic
=

)
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Fig.2 Phase Plot (R = 50, A = 1.0, B3 = 0.02)

The stability mentioned above is indeed orbital stability
(orbital stability is usually defined in the phase space).
Evidently, the anti-symmetric mode become unstable after
pitchfork bifurcation as shown in Fig2. For more
informations about this methodology, see Ref.[9,10].

3.2 Failure the Homoclinic Melnikov’s Method

In the previous section, the dynamics of system(l) for low
energies were investigated by means of the perturbation
method and the homoclinic orbit was found in the
averaged equations as the energy and nonlinear parameter
vary. As the energy increases, the stable and unstable
manifolds of the homoclinic orbit intesect transversely and
the existence of an infinity of transverse homoclinic
intersections can be proved by using the homoclinic
Melnikov analysis[11]. Then the Smale-Birkoff homoclinic
theorem can be applied to show the existence of
Smale-horseshoes in its dynamics.

Let f: R" = R be a difeomorphism such that p is a
hyperbolic fxed point and there exists a point q*p of
transversal intersection between W'(p) and W*p). Then f
has a hyperbolic invariant set A on which fis topologically
equivalent to a subshif of finite type.

In the above thoerem, the invariant set A contains :

e A countable infinity of periodic orbits.

° An uncountable infinity of bounded nonperiodic motions.
o A dense orbits.

Moreover, the map fla structurally stable.

This is the brief scenario for proving that the system
posesses no global analytic second integral. But in the
present case, one cannot prove analytically the existence of
Smale-horseshoes and thus, chaotic motions since the
unperturbed Hamiltonian of the system(I) has no such
homoclinic orbits. Therefore, the only possible way for
detecting the transverse intersections of invariant manifolds
is by direct numerical integrations of the equations of
motion. In Ref.[12], the transverse homoclinic intersections
of stable and unstable manifolds were computed by using
numerical integrations and as initial values, he used the
linear eigenspace about each fixed point but computation of
transverse intersections was not performed in this paper.

3.3 Poincare’ Maps

1 135 1.5 w

In this section, a Poincare’ map of a flow which is one of
the powerful technique for studying flows in nonlinear
dynamics was constructed and the standard method
developed by Month and Rand(3] was followed.

The Poincare’ section £ can be defined by :

S={x1=0,x1> 0 N {(H = p (21)
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Fig.3 Poincare’ Maps(8s = 0.1 < 1/4), h

The choice of a particular Z is not too critical since any
two such maps are topologically equivalent. The Poincare’
map is illustrated at Fig.3 and for this, the equations of
motion were numerically integrated with a 4th order
Runge-Kutta algorithm. The nonlinear parameter B3 = 0.1
was used for detecting a large and small scale chaotic
motions as the energy increases. From the examination of
the Poincare’ maps, one can see that the unstable normal
mode generates the global chaotic motions. And one can
also detect the subharmonic motions generated from the
breakdown of invariant KAM tori and the existence of
subharmonic orbits will be proved in terms of analytic
method.

4, Subharmonic Melnikov Analysis

4.1 Melinkov’s Method : Global Perturbations

Consider 2-DOF Hamiltonan Systems of the form
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H®(q,p) = Holgp) + eH'(q,p) (22)

where the unperturbed Hamiltonian Hy =F) + Fa.

For £ = 0, the system Hy is completely integrable since it
degenerates into two SDOF oscillators. It is possible to
reduce the 2-dimensional Hamltonian system as follows :

dai  _ arL® arl 2
d®: - " ap T am + 09
dp1 arL® ar! 2 @)
&, = Tag " FTaq * O
where
L® = Fi'h - Filqi,p)
! = - H(q1,p1,82:L°(q1,pi:h)) (24)

L%q1,puh)

Since H' is 2n periodic in 82, so is L', and the reduced
system (23) is in the form of a periodically perturbed
system, one can apply the Melnikov theory for
subharrmonic motions{4]. And the subharmonic Melnikov
function is given by :



2m
M) = [7IL®, L')q1(82),p1(82),85+80 ; W); (25)

where { ¢, *} is the poisson bracket.
A direct application of the Melnikov’'s method gives the
following resuilt.

Theorem (Veerman, 1985) :

Fix >0, m, n relatively prime integer and choose &
suficiently small. Then, if M(8, m, n, h) has simple zeros
as a function of & in [0,2am/n) (or M(to, m, n, h) as a
function of to in [0,Ti]), the resonant torus given by
(a1,01,02)=(q1(8-60), p1( 8- &),82) breaks into Zk=j/m distinct
2am~periodic orbits and there are no other 2am-periodic
orbit in its neighberhood.

It was proven that each 2nm-periodic orbit pierces the
Poincare’ section at 6:=0 precisely m times before closing
up and for sufficiently small &, precisely k of pericdic orbit
are hyperbolic and k are elliptc[4]. For details, see
Ref.[4,13].

4.2 Application of the Method for System(I)

Now the outlined theory reviewed in the previous section
can be applied for the system(I). For this, let us assume
that in the system(D) the linear and nonlinear coupling are
weak. Then the system(I) can be written as follows :

X1+ x1 o+ oxi o+ eti(xi-x2) + EBs(xy-x2)3

W

(26)

X2 + x2 + x3 - edi(xi-x2) - eBalxy-xz)?

n
(=

And corresponding Hamiltonian is

H*(q,p)

"

%(p?w%) + %(q%w%) + %(q‘hq%)

+ 8%(01"02)2 + 5%@1‘612)" @0

Holg.p) + eH q,p)

where (g1,g2)=(x1,x2), (p1,p2)=(x1,%2) are generalized

coordinates and momenta and where

Holg,p) = Filqi,p2) + F2(qz,p2)

2 4 (28)
el' aqi gqi .
2 Y Tyt Ty =l

The periodic orbits of the unperturbed system can be
evaluated in terms of Jacobi elliptic functions[14].

g = Xenl(1 + XH% k1

D, ¢ S .
K s xy it L2

where initial conditions @i(0)=X; qi(0)=pi(0)=0 and

where cnl ¢, «] is the elliptic cosine and ki is the elliptic

modulus. The resonance relationship aTi=mT2 or
W2/01=m/n leads to :
(HYA-D”2 CHM-n©
mK —
77 ) . ( 2’ (30)
Hi/d ﬁllﬂ

where Hi=1+4h;, Hi=1+4(h-h)) and h=hi+ho.

In this equation K[ *] is the complete elliptic integral of
the first kind. It was shown that for fixed Am and n, in a
certain range, Eq.(30) gives a unique solution for /m[4].
Thus, in the following range, there exists a unique hy for
given m,n and A :

Lrap -2 4
mK(J‘gﬁmm—)/(lﬂih) < nk(0)

((1+4m2-112
Y2(1+4R) ¥

(31)
nk( J(eam™ < mi(o)

If the value of m/n is out of the range, the unique A1 may
not exist in [0,h) and the perturbation analysis is not valid.
Now the Melnikov function can be evaluated.

Ty mTy2
Mzo) = —- s F1 s HM et t0)de
mTy2
- [ pi O [aay (D-as (o)) +Batal () )

-3g}(6) qa(t+to) +3q1(8)qd (t+ o) - gd(t+to))]de

Since pu(t) is even and qi(t) is odd function of time, the
integrals of the term pig1 and pig;’ vanish.

The integral (32) is very difficult to evaluate but following
arguments are possible. For each to = kT%/2 = knTy/2m,
@t + t) becomes an even function of ¢ as follows :

qz2(t + to) = qalt + to) = (-1¥qa(t) (33)

Thus, the integral (32) vanishes for & = k7%2 and the
following is obtained :

Mito=* T2 mon m = 0 (34)

Next, one has to show that the zeros of the Melnikov
function are simple in oder to satisfy the aforementioned
theorem

dM(t h
——Olatmol—ﬂl_) | tockT¥2 b ad 0 (35)

Here, only final results will be given.

M (ro= L2 -

J? (36)
(_1) mT3 ial ial k3, i i lI
AT ; u-l“i“Z*‘BI‘l(I iAZ (_1) 2 A‘AZ “ﬂ 2
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After some manipulations, one can obtain the Melnikov
function as a function of tl[4] and the results are :

M(to) =

DTS S o) [t B(iag- -2 atasontrD) (ar)

(2u+1)2nmeo ]
T

The M and M’ is not identically zero with the exception
of the following case :

X sin{

wafh + BTN - At mrh =0 (38)

In the above expression, summation was omitted.
Therefore as mentioned earlier, for fixed m, n and h, the
Melnikov function (37) has simple zeros at to = k7%/2 only
excepting for the case (38) and from the aforementioned
theorem in the previous section, one can see that the
resonant torus breaks into two distinct, 2m periodic orbits
for the fixed energy level A

4.3 Application of the Method for S(II)

As a second example, consider the following 2-DOF
Hamiltonian system :
e oy _ L,oa a2 1, 2 o 1,4 4
H(qi,p)) = 7 (pitpa)+ 5 (gitag)+ 7 (gi+ba?)
a
v 22 giptee B2 gt} (39)
2 2
= Holq,p) + eH'(q.p)
where Holg,p) = Filg1,;) + Fa2(qz,p2)
Filq,p1) = %p% + %qf + %q?
1 1 (40)
Fiqz,p2) = TP% + ‘5‘0(1% + %bp%

The above Hamiltonian system is somewhat generalized in
the sense that the unperturbed system, Fi and F2, are not
restricted by linearized natural frequencies and inertial
coupling is considered unlike the system analyzed in the
previous section. Let us call the Hamiltonian (39)
system(Il). A same methodology utilized in the section 4.2
will be applied to prove the existence of arbitrarily many
subharmonic orbits of the system(Il). The following
resonance condition has to satisfy in order for the system
Fi and F2 be integrably related :

a?  K(ci(h) K(0)(a®+ 4h/b) V4
KO (a0 = R(kath) “n
where
(1 + 4.1
B TR m T
2 12 _
ko(h) = Lo 4i/b) 1)

VY2(a? + b)YV

_82_

and where a=a/b.

The subbarmonic Melnikov function can be calculated as
follows
M(to) =

(43)

TiT3 = AYAM o (2u+1)2rmiy
—oet (@278 B~y sin[ — |

Thus, for the fixed m, n, and h, the Melnikov function has
2m simple zeros at fH=k7»/2 with the exception of the
following case :

a; - B2=10 (44)

Now main result of this paper can be readily stated as
follows.

Theorem

Suppose that m, n are relatively prime integers and pr
fixed H® = K>0, the inequalities (31),(41) are satisfed
Then, for & suficiently small, the resonant torus of the
system(I),(II) breaks into 2nm-periodic orbits and this
situation occurs in general with the exception of the
degenerating case (38) and (44) on the every energy level
H’ = >0,

Remarks. 1The values of M (%) can be obtained
approximately considering only first term (0 = 0 ) and this
approxXimation gives a good result since the series
converge rapidly. 2.Although there exist infinitely many
periodic orbits, one cannot prove their existence because
M (to)(and also M(to)) vanishes as m,n—o0. Thus only
finite number of periodic orbits in the neighborhood of
resonant torus can be found.

5. Concluding remarks

The dynamics of a 2-DOF Hamiltonian system with 4th
order nonlinear coupling were investigated and the main
results of the work can be stated as follows.

~ There exist two stable similar normal modes on the low
energy level and as the energy increases, antisymmetric
mode becomes unstable via pitchfork bifurcation.

- The global dynamics were analyzed by means of both
analytical and numerical techniques. And all the
aforementioned analytic results were verified via Poincare’
maps.

~ Subharmonic Melnikov analysis were performed and
from this, it was shown that the destruction phenomena of
invariant KAM tori occurs in general only excepting for
the degenerating cases.

Finally, the following topics are possible as extensions of
this work.



- Analytic prove the existence of secondary islands
together with numerical verification.

~ Destruction of irrational KAM tori.
- Forced and Damped vibrations : strange attractor.
- Quantitative analysis : Lyapunov exponents,

- Mode analysis for system(ID).
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