• 제목/요약/키워드: Hamilton cycles

검색결과 5건 처리시간 0.018초

Obstacle Avoidance in the Chaos Mobile Robot

  • Bae, Young-Chul;Kim, Yi-Gon;Mathis Tinduk;Koo, Young-Duk
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2004년도 SMICS 2004 International Symposium on Maritime and Communication Sciences
    • /
    • pp.100-105
    • /
    • 2004
  • In this paper, we propose a method to avoid obstacles that have unstable limit cycles in a chaos trajectory surface. We assume all obstacles in the chaos trajectory surface have a Van der Pol equation with an unstable limit cycle. When a chaos robot meets an obstacle in a Lorenz equation or Hamilton equation trajectory, the obstacle reflects the robot. We also show computer simulation results for avoidance obstacle which fixed obstacles and hidden obstacles of Lorenz equation and Hamilton equation chaos trajectories with one or more Van der Pol obstacles

  • PDF

카오스 이동 로봇에서의 장애물 회피 기법 (Obstacle Avoidance Technique for Chaotic Mobile Robot)

  • 배영철;김천석
    • 한국정보통신학회논문지
    • /
    • 제8권8호
    • /
    • pp.1692-1699
    • /
    • 2004
  • 본 논문에서는 카오스 궤적 표면에서 불안정한 리미트 사이클을 가지는 장애물 회피 기법을 제안하였다. 카오스 궤적 표면의 모든 장애물은 불안정한 리미트 사이클을 가지는 Van der Pol 방정식으로 가정하였다. 하나 또는 몇 개의 Van der Pol 장애물과 고정 장애물을 로봇이 피해가는 과정을 결과로 나타내었다.

Reconfiguring k-colourings of Complete Bipartite Graphs

  • Celaya, Marcel;Choo, Kelly;MacGillivray, Gary;Seyffarth, Karen
    • Kyungpook Mathematical Journal
    • /
    • 제56권3호
    • /
    • pp.647-655
    • /
    • 2016
  • Let H be a graph, and $k{\geq}{\chi}(H)$ an integer. We say that H has a cyclic Gray code of k-colourings if and only if it is possible to list all its k-colourings in such a way that consecutive colourings, including the last and the first, agree on all vertices of H except one. The Gray code number of H is the least integer $k_0(H)$ such that H has a cyclic Gray code of its k-colourings for all $k{\geq}k_0(H)$. For complete bipartite graphs, we prove that $k_0(K_{\ell},r)=3$ when both ${\ell}$ and r are odd, and $k_0(K_{\ell},r)=4$ otherwise.

A Obstacle Avoidance in the Chaotic Robot for Ubiquitous Environment

  • 배영철
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2005년도 공동추계학술대회
    • /
    • pp.197-204
    • /
    • 2005
  • In this paper, we propose a method to an obstacle avoidance of chaotic robots that have unstable limit cycles in a chaos trajectory surface in the ubiquitous environment. We assume all obstacles in the chaos trajectory surface have a Van der Pol equation with an unstable limit cycle. We also show computer simulation results of Chua's equation, Lorenz equation, Hamilton and Hyper-chaos equation trajectories with one or more Van der Pol as an obstacles. We proposed and verified the results of the method to make the embedding chaotic mobile robot to avoid with the chaotic trajectory in any plane.

  • PDF

Non-linear vibration and stability analysis of an axially moving rotor in sub-critical transporting speed range

  • Ghayesh, Mergen H.;Ghazavi, Mohammad R.;Khadem, Siamak E.
    • Structural Engineering and Mechanics
    • /
    • 제34권4호
    • /
    • pp.507-523
    • /
    • 2010
  • Parametric and forced non-linear vibrations of an axially moving rotor both in non-resonance and near-resonance cases have been investigated analytically in this paper. The axial speed is assumed to involve a mean value along with small harmonic fluctuations. Hamilton's principle is employed for this gyroscopic system to derive three coupled non-linear equations of motion. Longitudinal inertia is neglected under the quasi-static stretch assumption and two integro-partial-differential equations are obtained. With introducing a complex variable, the equations of motion is presented in the form of a single, complex equation. The method of multiple scales is applied directly to the resulting equation and the approximate closed-form solution is obtained. Stability boundaries for the steady-state response are formulated and the frequency-response curves are drawn. A number of case studies are considered and the numerical simulations are presented to highlight the effects of system parameters on the linear and nonlinear natural frequencies, mode shapes, limit cycles and the frequency-response curves of the system.