• Title/Summary/Keyword: Halotolerant and halophilic bacteria

Search Result 6, Processing Time 0.025 seconds

Relationship between Chemical Property and Microbial Activity of Reclaimed Tidal Lands at Western Coast Area in Korea

  • Ko, Eun-Seong;Joung, Ji-An;Kim, Chang-Hwan;Lee, Su Hwan;Sa, Tongmin;Choi, Joon-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.4
    • /
    • pp.254-261
    • /
    • 2014
  • The scientific information between microbial activities and chemical properties of reclaimed tidal soil is not enough to apply for reclamation projects. This study was conducted to investigate the relation between chemical properties and microbial activities of reclaimed tidal lands located at western coastal area (25 samples from Nampo, Ewon, Sukmoon and Shihwa sites). Most of the reclaimed soils showed chemical characteristics as salinity soil except Nampo site. The major component influenced the salinity of reclaimed soil was identified as a sodium from the relationship between EC and exchangeable cation. With an increase in EC of soil, the population of mesophilic bacteria decreases whereas halotolerant and halophilic bacteria increases. The population of mesophilic bacteria increased with an increase in both organic matter and dehydrogenase activity. However, the population of halotolerant and halophilic bacteria decreased with an increase in organic matter. Based on the relation between chemical property and microbial activity of reclaimed tidal soil, electrical conductivity and organic matter as chemical properties of soil, population of mesophilic bacteria, halotolerant and halophilic bacteria and dehydrogenase activity as microbial activities could be the major parameters for reclamation process.

Microbial Differentiation on Chemical Properties of Paddy Soils in Reclaimed Tidal Lands at Western-coast Area of Korea

  • Park, Mi-Na;Yang, Kwang-Min;Ryu, Jin-Hee;Sa, Tongmin;Choi, Joon-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.4
    • /
    • pp.381-387
    • /
    • 2016
  • The scientific information on the microbial differentiation according to the changes in chemical properties of paddy soil in reclaimed tidal lands is not enough to understand the reclamation processes. The changes in microflora based on the chemical properties of paddy soils at the same sites of reclaimed tidal lands (21 samples from Nampo, Ewon, Sukmoon and Shihwa sites) were investigated in 2013 and 2015. In general, organic matter in paddy soils increased whereas pH decreased with the reclamation time. The electrical conductivities (EC) of soil samples were closely related to the exchangeable $Na^+$. With an increases in EC of paddy soils from 0.39 to $48.9dS\;m^{-1}$, the ratios (%) of halotolerant and halophilic bacteria to mesophilic bacteria proportionally increased from 0.2% to 102,000%. The population of halotolerant and halophilic bacteria in total microflora was also differentiated with the changes in EC of the same sites from reclaimed tidal soils within 2 years. The population of mesophilic bacteria decreased with an increase in EC above $5dS\;m^{-1}$. The microflora including halotolerant and halophilic bacteria could be a candidate as a biological parameter in evaluating the reclamation processes in addition to the chemical index of EC.

Preservation of Marine Heterotrophic Bacteria by Using a Deep-freezing Method

  • Park, Shin-Hye;Lee, Hyun-Sang;Lee, Hong-Kum
    • Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.240-243
    • /
    • 2001
  • The effect of cryoprotectants and suspending solutions on the preservation of marine heterotophic bacteria was investigated. Six halotolerant and four halophilic bacterial isolates suspended in either distilled water or artificial seawater were preserved in glycerol and dimethylsulfoxide at -70$\^{C}$, respectively. After one year of preservation, the recovery rates on the appropriate agar plates were estimated. The survival rate was found to be dependent on the strain tested, regardless of the preservation conditions tested.

  • PDF

Physiology and Growth Properties of Halophilic Bacteria Isolated from Jeotgal (Salted Seafood) (젓갈(염장발효식품)에서 분리한 호염세균의 생리 및 성장특성)

  • Jung Yoo Jeong;Park Doo Hyun
    • Korean Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.263-268
    • /
    • 2004
  • Two species of halophilic bacteria were isolated from five salted seafoods and identified by 16S rDNA sequenc­ing homology. One was identified as Halomonas subglaciescola and other four strains were belong to Halomo­nas marina. The identity of all isolates with standard organisms was above $95\%.$ H. subglaciescola, H. marina IN, and H. marina SH-2 grew in salinity condition from $3%\;to\;18\%$ NaCl but growth of H. marina SQ and H. marina SH-l grew in salinity environment from $8\%\;to\;17\%.$ Maximum biomass of H. subglaciescola, H. marina IN, H. marina SQ, H. marina SH-1, and H. marina SH-2 growing in LB medium containing $15\%$ NaCl were about 3.2, 4.5, 4.5, 5.7, and 4.2, however the maximum biomass in LB medium containing $5\%$ NaCl were about 2.2, 1.1, 0.7, 0.2, and 2.4 as optical density at 660 nm, respectively. In scanning electron micrograph, unknown material (mucus) attached to outer membrane of all isolates was observed. When mucus isolated from halophilic bacterial cell was added to culture of E. coli, E. coli grew in medium containing $15\%$ NaCl.

Halotolerant Plant Growth Promoting Bacteria Mediated Salinity Stress Amelioration in Plants

  • Shin, Wansik;Siddikee, Md. Ashaduzzaman;Joe, Manoharan Melvin;Benson, Abitha;Kim, Kiyoon;Selvakumar, Gopal;Kang, Yeongyeong;Jeon, Seonyoung;Samaddar, Sandipan;Chatterjee, Poulami;Walitang, Denver;Chanratana, Mak;Sa, Tongmin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.4
    • /
    • pp.355-367
    • /
    • 2016
  • Soil salinization refers to the buildup of salts in soil to a level toxic to plants. The major factors that contribute to soil salinity are the quality, the amount and the type of irrigation water used. The presented review discusses the different sources and causes of soil salinity. The effect of soil salinity on biological processes of plants is also discussed in detail. This is followed by a debate on the influence of salt on the nutrient uptake and growth of plants. Salinity decreases the soil osmotic potential and hinders water uptake by the plants. Soil salinity affects the plants K uptake, which plays a critical role in plant metabolism due to the high concentration of soluble sodium ($Na^+$) ions. Visual symptoms that appear in the plants as a result of salinity include stunted plant growth, marginal leaf necrosis and fruit distortions. Different strategies to ameliorate salt stress globally include breeding of salt tolerant cultivars, irrigation to leach excessive salt to improve soil physical and chemical properties. As part of an ecofriendly means to alleviate salt stress and an increasing considerable attention on this area, the review then focuses on the different plant growth promoting bacteria (PGPB) mediated mechanisms with a special emphasis on ACC deaminase producing bacteria. The various strategies adopted by PGPB to alleviate various stresses in plants include the production of different osmolytes, stress related phytohormones and production of molecules related to stress signaling such as bacterial 1-aminocyclopropane-1-carboxylate (ACC) derivatives. The use of PGPB with ACC deaminase producing trait could be effective in promoting plant growth in agricultural areas affected by different stresses including salt stress. Finally, the review ends with a discussion on the various PGPB activities and the potentiality of facultative halophilic/halotolerant PGPB in alleviating salt stress.

Isolation and Identification of Halotolerant Bacillus sp. SJ-10 and Characterization of Its Extracellular Protease (세포외 Protease를 생산하는 내염성 Bacillus sp. SJ-10 균주의 분리 동정 및 효소 특성)

  • Kim, Eun-Young;Kim, Dong-Gyun;Kim, Yu-Ri;Choi, Sun-Young;Kong, In-Soo
    • Korean Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.193-199
    • /
    • 2009
  • A bacterium producing the halotolerant extracellular protease was isolated from squid jeotgal, and was identified as Bacillus sp. SJ-10 based on morphological, physiological and biochemical characteristics, as well as phylogenetic analysis using 16S rRNA gene sequence. The strain grew at $20^{\circ}C\sim55^{\circ}C$, pH 5~8, and 0%~14% NaCl and optimal growth conditions were $35{\pm}5^{\circ}C$, pH 7, and 5% NaCl. The major cellular fatty acids were anteiso-$C_{15:0}$, anteiso-$C_{17:0}$, and $C_{16:0}$ DNA G+C content was 50.58 mol% and menaquinone consisted of MK-7 Phylogenic analysis based on the 16S rRNA gene sequence indicated that SJ-10T belongs to the genus Bacillus. About 40 kDa of the salt-tolerant protease was purified by 40% ammonium sulfate saturation and Mono Q column chromatography. The optimal activity of the protease was pH 8 and stable at pH 5~10. The optimum temperature and NaCl concentration were $35{\pm}5^{\circ}C$ and $5{\pm}1%$, respectively.