• Title/Summary/Keyword: Hall Sensor Signal

Search Result 84, Processing Time 0.028 seconds

The Estimation Algorithm Design of Hall Sensor Signal Considering Safety of BLDC Motor (브러시리스 직류전동기의 안전성을 고려한 Hall Sensor 신호 추정 알고리즘 설계)

  • Yoon, Yong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.11
    • /
    • pp.1894-1899
    • /
    • 2016
  • In this paper, because the position sensor represents the important factor in BLDC (Brushless DC) motor drives, BLDC motor is necessary that the three Hall-sensors evenly be distributed around the stator circumference in case of the 3 phase motor. The Hall-sensor is set up in this motor to detect the main flux from the rotor. So the output signal from Hall-sensor is used to drive IGBT to control the stator winding current. However, in case of breakdown Hall sensor, we research that the estimation algorithm of Hall sensor signal to detect rotor position and for the speed feedback signals with BLDC motor whose six stator and two rotor designed. In addition, this paper presents a sensorless speed control of BLDC Motor using terminal voltage of the one phase. Rotor position information is extracted by indirectly sensing the back EMF from only one of the three terminal voltages for a three-phase BLDC motor.

A Design Of Cross-Shpaed CMOS Hall Plate And Offset, 1/f Noise Cancelation Technique Based Hall Sensor Signal Process System (십자형 CMOS 홀 플레이트 및 오프셋, 1/f 잡음 제거 기술 기반 자기센서 신호처리시스템 설계)

  • Hur, Yong-Ki;Jung, Won-Jae;Lee, Ji-Hun;Nam, Kyu-Hyun;Yoo, Dong-Gyun;Yoon, Sang-Gu;Min, Chang-Gi;Park, Jun-Seok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.152-159
    • /
    • 2016
  • This paper describes an offset and 1/f noise cancellation technique based hall sensor signal processor. The hall sensor outputs a hall voltage from the input magnetic field, which direction is orthogonal to hall plate. The two major elements to complete the hall sensor operation are: the one is a hall sensor to generate hall voltage from input magentic field, and the other one is a hall signal process system to cancel the offset and 1/f noise of hall signal. The proposed hall sensor splits the hall signal and unwanted signals(i.e. offset and 1/f noise) using a spinning current biasing technique and chopper stabilizer. The hall signal converted to 100 kHz and unwanted signals stay around DC frequency pass through chopper stabilizer. The unwanted signals are bloked by highpass filter which, 60 kHz cut off freqyency. Therefore only pure hall signal is enter the ADC(analog to dogital converter) for digitalize. The hall signal and unwanted signal at the output of an amplifer and highpass filter, which increase the power level of hall signal and cancel the unwanted signals are -53.9 dBm @ 100 kHz and -101.3 dBm @ 10 kHz. The ADC output of hall sensor signal process system has -5.0 dBm hall signal at 100 kHz frequency and -55.0 dBm unwanted signals at 10 kHz frequency.

Numerical Modeling of the Hall Sensor Signal Used in Pulsed Eddy Current Testing and Comparison of Its Characteristics with a Coil Sensor Signal (홀센서를 사용한 펄스와전류탐상 신호의 수치모델링 및 코일센서 신호와의 특성 비교)

  • Shin, Young Kil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.490-495
    • /
    • 2016
  • Pulsed eddy current (PEC) testing signals have typically been obtained from the electromotive force induced in a sensor coil. However, an increasing number of studies have elected to incorporate the Hall plate as a sensor. Thus, accurate numerical modeling of the Hall sensor signal is necessary. In this study, a PEC probe is designed and a numerical modeling program is written so that Hall sensor signals and coil sensor signals can be calculated simultaneously. First, a step current is used as the input current. The predicted Hall sensor signals show similar characteristics to those of the experimental signals reported by other researchers. The characteristics of the two types of signals are then analyzed and compared as the thickness of test object changes. The results show that the Hall sensor signal provides less information for evaluating the thickness of the test object than the coil sensor signal. The response signals from a pulsed input current are also calculated, and it is confirmed that an equivalent reversed signal pattern appeared after the pulse width at both signals.

Wide-range Speed Control Scheme of BLDC Motor Based on the Hall Sensor Signal

  • Lee, Dong-Hee
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.714-722
    • /
    • 2018
  • This paper presents a wide-range speed control scheme of brushless DC (BLDC) motors based on a hall sensor with separated low- and normal-speed controllers. However, the use of the hall sensor signal is insufficient to detect motor speed in the low-speed region because of low sensor resolution and time delay. In the proposed method, a micro-stepping current control method according to the torque angle variation is presented. In this mode, the motor current frequency and rotating angle are determined by the reference speed without the actual speed fed by the hall sensor. The detected torque angle is used to adjust the current value in a limited band to control the current value in accordance with the load. The torque angle is detected exactly at the changing point of the hall sensor signal. The rotor can follow the rotating flux with the variable torque angle. In a normal speed range, the conventional vector control scheme is used to control the motor current with a PI speed controller using the hall sensor. The torque characteristics are analyzed on the basis of the back EMF and current shape. To adopt the vector control scheme, the continuous rotor position is estimated by the measured speed and hall sensor position. At the mode changing point between low and normal speed range, the proper initial current command and reference rotor position are calculated. The calculated current command can reduce the torque ripple during transient mode. The proposed method is simple but effective in extending the speed control range of a conventional BLDC motor with hall sensor without the need for a high-resolution encoder. The effectiveness of the proposed method is verified by various experiments on a practical BLDC motor.

Compensation Method of Position Signal Error with Misaligned Hall-Effect Sensors of BLDC Motor

  • Park, Joon Sung;Choi, Jun-Hyuk;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.889-897
    • /
    • 2016
  • This paper presents an improved approach for compensating rotor position signal displacement in brushless DC (BLDC) motors with misaligned hall-effect sensors. Typically, the hall-effect sensors in BLDC motors are located in each phase and positioned exactly 120 electrical degrees apart. However, limitations in mechanical tolerances make it difficult to place hall-effect sensors at the correct location. In this paper, a position error compensator to counteract the hall-effect sensor positioning error is proposed. The proposed position error compensator uses least squares error analysis to adjust the relative position error and back-EMF information to reduce the absolute offset error. The effectiveness of the proposed approach is verified through several experiments.

Fabrication and Characteristics of the Integrated Hall Sensor IC For Driving Fan Motors (팬 모터 구동을 위한 집적화된 홀 센서 IC의 제작 및 특성)

  • 이철우
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.73-76
    • /
    • 2002
  • In this paper we present an integrated Hail sensor It for fan motors, fabricated in industrial bipolar process. As a discrete Hall sensor and signal processing circuitry In the fan motor system were Integrated into single chip a temperature dependence of Hall sensitivity and Hall offset voltage can be compensated and cancelled by on-chip circuitry. We Propose a novel temperature compensation of Hall sensitivity with negative temperature coefficient (TC) using the differential amplifier gain with Positive TC. After a package of the chip was sealed using a plastic Package 20 Pins, the thermal and magnetic characteristics were investigated. The obtained experimental results are in agreement with analytical predictions and have more excellent performance than\ulcorner conventional the fan motor system using discrete Hall sensor.

  • PDF

Planar Hall Resistance Sensor for Monitoring Current

  • Kim, KunWoo;Torati, Sri Ramulu;Reddy, Venu;Yoon, SeokSoo
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.151-154
    • /
    • 2014
  • Recent years have seen an increasing range of planar Hall resistive (PHR) sensor applications in the field of magnetic sensing. This study describes a new application of the PHR sensor to monitor a current. Initially, thermal drift experiments of the PHR sensor are performed, to determine the accuracy of the PHR signal output. The results of the thermal drift experiments show that there is no considerable drift in the signals attained from 0.1, 0.5, 1 and 2 mA current. Consequently, the PHR sensor provides adequate accuracy of the signal output, to perform the current monitoring experiments. The performances of the PHR sensor with bilayer and trilayer structures are then tested. The minimum detectable currents of the PHR sensor using bilayer and trilayer structures are $0.51{\mu}A$ and 54 nA, respectively. Therefore, the PHR sensor having trilayer structure is the better choice to detect ultra low current of few tens nanoampere.

Planar Hall Sensor Used for Microbead Detection and Biochip Application

  • Thanh, N.T.;Kim, D.Y.;Kim, C.G.
    • Journal of Magnetics
    • /
    • v.12 no.1
    • /
    • pp.40-44
    • /
    • 2007
  • The Planar Hall effect in a spin valve structure has been applied as a biosensor being capable of detecting $Dynabeads^{(R)}$ M-280. The sensor performance was tested under the application of a DC magnetic field where the output signals were obtained from a nanovoltmeter. The sensor with the pattern size of $50{\times}100{\mu}m^2$ has produced high sensitivity; especially, the real-time profiles by using that sensor revealed significant performance at external applied magnetic field of around 7.0 Oe with the resolution of 0.04 beads per $\mu m^2$. Finally, a successful array including 24 patterns with the single sensor size of $3{\times}3{\mu}m^2$ has shown the uniform and stable signals for single magnetic bead detection. The comparison of this sensor signal with the others has proved feasibility for biosensor application. This, connecting with the advantages of more stable and high signal to noise of PHR sensor's behaviors, can be used to detect the biomolecules and provide a vehicle for detection and study of other molecular interaction.

Bluetooth Low-Energy Current Sensor Compensated Using Piecewise Linear Model

  • Shin, Jung-Won
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.283-292
    • /
    • 2020
  • Current sensors that use a Hall element and Hall IC to measure the magnetic fields generated in steel silicon core gaps do not distinguish between direct and alternating currents. Thus, they are primarily used to measure direct current (DC) in industrial equipment. Although such sensors can measure the DC when installed in expensive equipment, ascertaining problems becomes difficult if the equipment is set up in an unexposed space. The control box is only opened during scheduled maintenance or when anomalies occur. Therefore, in this paper, a method is proposed for facilitating the safety management and maintenance of equipment when necessary, instead of waiting for anomalies or scheduled maintenance. A Bluetooth 4.0 low-energy current-sensor system based on near-field communication is used, which compensates for the nonlinearity of the current-sensor output signal using a piecewise linear model. The sensor is controlled using its generic attribute profile. Sensor nodes and cell phones used to check the signals obtained from the sensor at 50-A input currents showed an accuracy of ±1%, exhibiting linearity in all communications within the range of 0 to 50 A, with a stable output voltage for each communication segment.

Position Estimator Employing Kalman Filter for PM Motors Driven with Binary-type Hall Sensors

  • Lee, Dong-Myung
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.931-938
    • /
    • 2016
  • Application of vector control scheme for consumer products is enlarging to improve control performance. For the field-oriented control, accurate position detection is essential and generally requires expensive sensors. On the other hand, cost-reduction is important in home appliances, so that binary-type Hall-effect sensors are commonly used rather than using an expensive sensor such as an encoder. The control performance is directly influenced by the accuracy of the position information, and there exist non-uniformities related to Hall sensors in electrical and mechanical aspects, which result in distorted position information. Therefore, to get high-precision position information from low-resolution Hall sensors, this paper proposes a new position estimator consisting of a Kalman filter and feedforward compensation scheme, which generates a linearly changing position signal. The efficacy of the proposed scheme is verified by simulation and experimental results carried out with a 48-pole permanent magnet motor.