• 제목/요약/키워드: Half-width of Boundary

검색결과 25건 처리시간 0.022초

SMAC법에 의한 2차원 자유분류의 수치해석 (NUMERICAL ANALYSIS FOR 2-D FREE JET FLOW BY SMAC SCHEME)

  • 정세훈;안영준;신병록
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.298-302
    • /
    • 2009
  • Numerical analysis of two dimensional incompressible laminar free jet flow was carried out by using finite difference SMAC scheme. Flow characteristics of free jet flow such as jet width, similarity of jet velocity and hypothetical origin were investigated for different Reynolds numbers of Re=30 and 100. The reliability of predictions were confirmed by comparison with exact solution. Non-dimensional velocity distribution showed similarity of jet flow velocity after initial region. In the region of laminar flow, the location of hypothetical origin becomes more distant with Reynolds number.

  • PDF

Stresses around an underground opening with sharp corners due to non-symmetrical surface load

  • Karinski, Y.S.;Yankelevsky, D.Z.;Antes, M.Y.
    • Structural Engineering and Mechanics
    • /
    • 제31권6호
    • /
    • pp.679-696
    • /
    • 2009
  • The paper aims at analyzing the stress distribution around an underground opening that is subjected to non-symmetrical surface loading with emphasis on opening shapes with sharp corners and the stress concentrations developed at these locations. The analysis is performed utilizing the BIE method coupled with the Neumann's series. In order to implement this approach, the special recurrent relations for half plane were proven and the modified Shanks transform was incorporated to accelerate the series convergence. To demonstrate the capability of the developed approach, a horseshoe shape opening with sharp corners was investigated and the location and magnitude of the maximum hoop stress was calculated. The dependence of the maximum hoop stress location on the parameters of the surface loading (degree of asymmetry, size of loaded area) and of the opening (the opening height) was studied. It was found that the absolute magnitude of the maximum hoop stress (for all possible surface loading locations) is developed at the roof points when the opening height/width ratio is relatively large or when the pressure loading area is relatively narrow (compared to the roof arch radius), and contrarily, when the opening height/width ratio is relatively small or when the surface pressure is applied to a relatively wide area, the absolute magnitude of the maximum hoop stress is developed at the bottom sharp corner points.

원통형 이층유체의 회전반실험 (극전선 모의) (Laboratory Experiment of Two-Layered Fluid in a Rotating Cylindrical Container (Simulation of polar Front))

  • 나정열;최진영
    • 한국해양학회지
    • /
    • 제29권3호
    • /
    • pp.296-303
    • /
    • 1994
  • 회전하는 원통형 이층 유체에 하층 유체와 동일한 밀도의 유체를 경사진 하층 바 닥의 둘레를 통하여 주입시 하층 내부는 일정한 수직 운동을 하게 되며 이러한 수직운 동은 결국 하층 유체에 Sverdrup type의 운동인 남향의 서안 경계류와 북향의 내부 운 동을 발생시킨다. 이때 $\beta$-효과와 동시에 하층 유체가 상층 경계면과 만나게 하므로써 소위 극전선 효과를 갖고 있는 상층 유체의 운동 특성을 관찰하였다. 서안에서 의 순 압성, 동안에서 의 경압성 운동이 뚜렷하게 나타나고 특히 동안 경계류의 남향과 서안 경계류의 남향은 서안에서 의 이안 현상을 야기시킨다. 상층에 $\beta$-효과를 증가시 서안 경계류의 폭이 감소하는 이안 현상후 내부에 "eddy" 모양의 흐름이 존재한다. 한편 경압성 Rossby wave는 동안 부근에서 뚜렷하게 관측되나 서쪽으로 진행하면서 소멸되 는 현상이 관측되었다. 하층 유체에 국지적 지형 효과서 준 경우 상층수의 서안 경계 류 및 동안 경계류가 민감하게 반응하여 동안에서는 정상파 형태의 운동이 나타나고 서안에서는 이안 현상 없이 경계류의 폭이 증가함을 보인다. 이는 하층의 순압성 운동 이 지형 효과를 느끼는 반면, 그 영향은 상층에 직접전달되지 못하고 있음을 보여주고 있는 것이라 사료된다. 상층의 $\beta$-효과 증가시 internal radius보다 훨씬 큰 규모의 파형이 내부에 존재하는 특성을 보여 주고 있다. 보여 주고 있다.

  • PDF

Numerical analysis of natural convection heat transfer from a fin in parallel enclosure

  • Bae, Myung-Whan;Mochimaru, Yoshihiro
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권5호
    • /
    • pp.412-417
    • /
    • 2016
  • A fin of finite width with infinitely small thickness is assumed to be placed horizontally between two horizontal parallel plates of infinite extension in the exactly central position. The lower plate and the half of the upper plate are kept at a constant lower temperature, and the remaining upper plate is kept at a constant higher temperature. The fin is also kept at a constant temperature (variable). Steady-state two-dimensional laminar natural convection is analyzed as a problem of boundary value under a boundary-fitted conformal mapping system, using a spectral finite difference scheme, with a condition of doubly-connectedness. The steady-state solution is obtained as a limit of the transient solution.

언덕지형을 지나는 유동에 관한 연구 (Wind Flow over Hilly Terrain)

  • 임희창;김현구;이정묵;경남호
    • 한국대기환경학회지
    • /
    • 제12권4호
    • /
    • pp.459-472
    • /
    • 1996
  • An experimental investigation on the wind flow over smooth bell-shaped two-dimensional hills with hill slopes (the ratio of height to half width) of 0.3 and 0.5 is performed in an atmospheric boundary-layer wind tunnel. Two categories of the models are used in the present investigation; six two-dimensional single-hills, and four continuous double-hills. The measurements of the flow field and surface static-pressure distribution are carried out over the Reynolds number (based on the hill height) of 1.9 $\times 10^4, 3.3 \times 10^4, and 5.6 \times 10^4$. The velocity profiles and turbulence characteristics are measured by the pitot-tube and X-type hot-wire anemometer, respectively. The undisturbed boundary-layer profile on the bottom surface of the wind tunnel is reasonably consistent with the power-law profile with $\alpha = 7.0 (1/\alpha$ is the power-law exponent) and shows good spanwise uniformities. The profiles of turbulent intensity are found to be consistent along the centerline of the wind tunnel. The measured non-dimensional speed-up profiles at the hill crest show good agreements with the predictions of Jackson and Hunt's linear theory. The flow separation occurs in the hill slope of 0.5, and the oil-ink dot method is used to find the reattachment points in the leeside of the hill. The measured reattachment points are compared with the numerical predictions. Comparisons of the mean velocity profiles and surface pressure distributions between the numerical predictions and the experimental results show good agreements.

  • PDF

Open-jet boundary-layer processes for aerodynamic testing of low-rise buildings

  • Gol-Zaroudi, Hamzeh;Aly, Aly-Mousaad
    • Wind and Structures
    • /
    • 제25권3호
    • /
    • pp.233-259
    • /
    • 2017
  • Investigations on simulated near-surface atmospheric boundary layer (ABL) in an open-jet facility are carried out by conducting experimental tests on small-scale models of low-rise buildings. The objectives of the current study are: (1) to determine the optimal location of test buildings from the exit of the open-jet facility, and (2) to investigate the scale effect on the aerodynamic pressure characteristics. Based on the results, the newly built open-jet facility is well capable of producing mean wind speed and turbulence profiles representing open-terrain conditions. The results show that the proximity of the test model to the open-jet governs the length of the separation bubble as well as the peak roof pressures. However, test models placed at a horizontal distance of 2.5H (H is height of the wind field) from the exit of the open-jet, with a width that is half the width of the wind field and a length of 1H, have consistent mean and peak pressure coefficients when compared with available results from wind tunnel testing. In addition, testing models with as large as 16% blockage ratio is feasible within the open-jet facility. This reveals the importance of open-jet facilities as a robust tool to alleviate the scale restrictions involved in physical investigations of flow pattern around civil engineering structures. The results and findings of this study are useful for putting forward recommendations and guidelines for testing protocols at open-jet facilities, eventually helping the progress of enhanced standard provisions on the design of low-rise buildings for wind.

A comparative study between the new model and the current model for T-shaped combined footings

  • Garay-Gallegos, Jesus Rafael;Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel;Aguilera-Mancilla, Gabriel;Garcia-Canales, Edith
    • Geomechanics and Engineering
    • /
    • 제30권6호
    • /
    • pp.525-538
    • /
    • 2022
  • This paper presents a more general model for T-shaped combined footings that support two columns aligned on a longitudinal axis and each column provides an axial load and two orthogonal moments. This model can be applied to the following conditions: (1) without restrictions on its sides, (2) a restricted side and (3) two opposite sides restricted. This model considers the linear soil pressure. The recently published works have been developed for a restricted side and for two opposite sides restricted by Luévanos-Rojas et al. (2018a, b). The current model considers the uniform pressure distribution because the position of the resultant force coincides with the center of gravity of the surface of the footing in contact with the soil in direction of the longitudinal axis where the columns are located. This paper shows three numerical examples. Example 1 is for a T-shaped combined footing with a limited side (one column is located on the property boundary). Example 2 is for a T-shaped combined footing with two limited opposite sides (the two columns are located on the property boundary). Example 3 is for a T-shaped combined footing with two limited opposite sides, one column is located in the center of the width of the upper flange (b1/2=L1), and other column is located at a distance half the width of the strip from the free end of the footing (b2/2=b-L1-L). The main advantage of this work over other works is that this model can be applied to T-shaped combined footings without restrictions on its sides, a restricted side and two opposite sides restricted. It also shows the deficiencies of the current model over the new model.

Nonlinear finite element modeling of steel-sheathed cold-formed steel shear walls

  • Borzoo, Shahin;Ghaderi, Seyed Rasoul Mir;Mohebi, Saeed;Rahimzadeh, Ali
    • Steel and Composite Structures
    • /
    • 제22권1호
    • /
    • pp.79-89
    • /
    • 2016
  • Cold formed steel shear panel is one of the main components to bearing lateral load in low and mid-rise cold formed steel structures. This paper uses finite element analysis to evaluate the stiffness, strength and failure mode at cold formed steel shear panels whit steel sheathing and nonlinear connections that are under monotonic loading. Two finite element models based on two experimental model whit different failure modes is constructed and verified. It includes analytical studies that investigate the effects of studs and steel sheathing thickness changes, fasteners spacing at panel edges, one or two sides steel sheathing and height-width ratio of wall on the lateral load capacity. Dominant failure modes include buckling of steel sheet, local buckling in boundary studs and sheet unzipping in the bottom half of the wall.

디젤엔진 피스톤용 SCM440의 레이저 표면경화부의 잔류응력 (Residual Stress Distribution of Laser Hardened SCM440 for Diesel Engine Piston)

  • 이동석;유웅재;김재도
    • 열처리공학회지
    • /
    • 제8권3호
    • /
    • pp.182-186
    • /
    • 1995
  • SCM440, which is widely used as the diesel engine piston of vessel, has been hardened by a $CO_2$ laser with the wavelength of $10.6{\mu}m$. Laser hardening experiment has been carried out for the condition of a laser power 1kW, the travel speed between 0.4 and 1.5m/min, and a rectangular-Gaussian beam. Residual stress has been measured by using middle point technique of half value width of X-ray diffraction method. It was found that the compressive residual stress with the range between 400 and 600MHz has distributed in the laser hardening zones and the tensile residual stress between 100 and 200MHz has distributed in the boundary of hardening zones.

  • PDF

Shear wave in a fiber-reinforced anisotropic layer overlying a pre-stressed porous half space with self-weight

  • Kakar, Rajneesh;Kakar, Shikha
    • Smart Structures and Systems
    • /
    • 제18권5호
    • /
    • pp.911-930
    • /
    • 2016
  • The main purpose of this paper is to study the effects of initial stress, gravity, anisotropy and porosity on the propagation of shear wave (SH-waves) in a fiber-reinforced layer placed over a porous media. The frequency equations in a closed form have been derived for SH-waves by applying suitable boundary conditions. The frequency equations have been expanded and approximated up to $2^{nd}$ order of Whittaker's function. It has been observed that the SH-wave velocity decreases as width of fiber-reinforced layer increases. However, with the increase of initial stress, gravity parameter and porosity, the phase velocity increases. The results obtained are in perfect agreement with the standard results investigated by other relevant researchers.