• 제목/요약/키워드: Hadoop System

검색결과 239건 처리시간 0.027초

노드의 동적 다운 스케일링을 지원하는 분산 클러스터 시스템의 설계 및 구현 (Design and Implementation of Distributed Cluster Supporting Dynamic Down-Scaling of the Cluster)

  • 류우석
    • 한국전자통신학회논문지
    • /
    • 제18권2호
    • /
    • pp.361-366
    • /
    • 2023
  • 빅데이터의 분산 처리를 수행하기 위한 대표적인 프레임워크인 하둡은 클러스터 규모를 수천 개 이상의 노드까지 증가시켜서 병렬분산 처리 성능을 높일 수 있는 장점이 있다. 하지만 클러스터의 규모를 줄이는 것은 결함이 있거나 성능이 저하된 노드들을 영구적으로 퇴역시키는 수준에서 제한되어 있음에 따라 소규모 클러스터에서 여러 노드들을 유연하게 운용하기에는 한계가 있다. 본 논문에서는 하둡 클러스터에서 노드를 제거할 때 발생하는 문제점을 논의하고 분산 클러스터의 규모를 탄력적으로 관리하기 위한 동적 다운 스케일링 기법을 제안한다. 일시적 다운스케일을 목적으로 노드를 제거할 때 완전히 퇴역시키는 것이 아니라 일시적으로 해제하고 필요시 다시 연결할 수 있도록 함으로써 동적 다운 스케일링을 지원할 수 있도록 시스템과 인터페이스를 설계하고 구현하였다. 실험 결과 성능저하 없이 효과적으로 다운 스케일링을 수행하는 것을 검증하였다.

빅데이터 기반의 수요자원 관리 시스템 개발에 관한 연구 (A Study on Demand-Side Resource Management Based on Big Data System)

  • 윤재원;이인규;최중인
    • 전기학회논문지
    • /
    • 제63권8호
    • /
    • pp.1111-1115
    • /
    • 2014
  • With the increasing interest of a demand side management using a Smart Grid infrastructure, the demand resources and energy usage data management becomes an important factor in energy industry. In addition, with the help of Advanced Measuring Infrastructure(AMI), energy usage data becomes a Big Data System. Therefore, it becomes difficult to store and manage the demand resources big data using a traditional relational database management system. Furthermore, not many researches have been done to analyze the big energy data collected using AMI. In this paper, we are proposing a Hadoop based Big Data system to manage the demand resources energy data and we will also show how the demand side management systems can be used to improve energy efficiency.

A Study on Efficient Building Energy Management System Based on Big Data

  • Chang, Young-Hyun;Ko, Chang-Bae
    • International journal of advanced smart convergence
    • /
    • 제8권1호
    • /
    • pp.82-86
    • /
    • 2019
  • We aim to use public data different from the remote BEMS energy diagnostics technology and already established and then switch the conventional operation environment to a big-data-based integrated management environment to operate and build a building energy management environment of maximized efficiency. In Step 1, various network management environments of the system integrated with a big data platform and the BEMS management system are used to collect logs created in various types of data by means of the big data platform. In Step 2, the collected data are stored in the HDFS (Hadoop Distributed File System) to manage the data in real time about internal and external changes on the basis of integration analysis, for example, relations and interrelation for automatic efficient management.

농업 이미지 처리를 위한 빅테이터 플랫폼 설계 및 구현 (Design and Implementation of Big Data Platform for Image Processing in Agriculture)

  • 반퀴엣뉘엔;신응억뉘엔;둑티엡부;김경백
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 추계학술발표대회
    • /
    • pp.50-53
    • /
    • 2016
  • Image processing techniques play an increasingly important role in many aspects of our daily life. For example, it has been shown to improve agricultural productivity in a number of ways such as plant pest detecting or fruit grading. However, massive quantities of images generated in real-time through multi-devices such as remote sensors during monitoring plant growth lead to the challenges of big data. Meanwhile, most current image processing systems are designed for small-scale and local computation, and they do not scale well to handle big data problems with their large requirements for computational resources and storage. In this paper, we have proposed an IPABigData (Image Processing Algorithm BigData) platform which provides algorithms to support large-scale image processing in agriculture based on Hadoop framework. Hadoop provides a parallel computation model MapReduce and Hadoop distributed file system (HDFS) module. It can also handle parallel pipelines, which are frequently used in image processing. In our experiment, we show that our platform outperforms traditional system in a scenario of image segmentation.

A Development of LDA Topic Association Systems Based on Spark-Hadoop Framework

  • Park, Kiejin;Peng, Limei
    • Journal of Information Processing Systems
    • /
    • 제14권1호
    • /
    • pp.140-149
    • /
    • 2018
  • Social data such as users' comments are unstructured in nature and up-to-date technologies for analyzing such data are constrained by the available storage space and processing time when fast storing and processing is required. On the other hand, it is even difficult in using a huge amount of dynamically generated social data to analyze the user features in a high speed. To solve this problem, we design and implement a topic association analysis system based on the latent Dirichlet allocation (LDA) model. The LDA does not require the training process and thus can analyze the social users' hourly interests on different topics in an easy way. The proposed system is constructed based on the Spark framework that is located on top of Hadoop cluster. It is advantageous of high-speed processing owing to that minimized access to hard disk is required and all the intermediately generated data are processed in the main memory. In the performance evaluation, it requires about 5 hours to analyze the topics for about 1 TB test social data (SNS comments). Moreover, through analyzing the association among topics, we can track the hourly change of social users' interests on different topics.

하둡 분산 파일시스템의 동적 클러스터 관리 기법 (Dynamic Cluster Management of Hadoop Distributed Filesystem)

  • 류우석
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 추계학술대회
    • /
    • pp.435-437
    • /
    • 2016
  • 하둡 분산 파일시스템(HDFS)는 빅데이터의 병렬 분산 처리를 위해 다수의 노드에 데이터를 중복 저장하는 파일시스템이다. HDFS의 분산 노드 클러스터는 수천 개 이상의 규모 확장성을 갖추고 있으나 빅데이터 처리를 위한 전용 하드웨어를 가정하고 있으며, 기존의 기업 및 병원에서 사용하고 있는 다양한 유휴 전산 자원을 고려하지는 못하는 문제가 있다. 본 논문에서는 기관 내 존재하는 다양한 유휴 전산 자원을 필요에 따라 동적으로 HDFS에 추가함으로써 빅데이터 저장 및 분석 성능을 향상시킬 수 있는 동적 클러스터 관리 기법을 제시한다.

  • PDF

HBase based Business Process Event Log Schema Design of Hadoop Framework

  • Ham, Seonghun;Ahn, Hyun;Kim, Kwanghoon Pio
    • 인터넷정보학회논문지
    • /
    • 제20권5호
    • /
    • pp.49-55
    • /
    • 2019
  • Organizations design and operate business process models to achieve their goals efficiently and systematically. With the advancement of IT technology, the number of items that computer systems can participate in and the process becomes huge and complicated. This phenomenon created a more complex and subdivide flow of business process.The process instances that contain workcase and events are larger and have more data. This is an essential resource for process mining and is used directly in model discovery, analysis, and improvement of processes. This event log is getting bigger and broader, which leads to problems such as capacity management and I / O load in management of existing row level program or management through a relational database. In this paper, as the event log becomes big data, we have found the problem of management limit based on the existing original file or relational database. Design and apply schemes to archive and analyze large event logs through Hadoop, an open source distributed file system, and HBase, a NoSQL database system.

GPGPU를 활용한 스파크 기반 공간 연산 (Spatial Computation on Spark Using GPGPU)

  • 손찬승;김대희;박능수
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제5권8호
    • /
    • pp.181-188
    • /
    • 2016
  • 최근 급격히 증가하는 공간 데이터를 효율적으로 처리하기 위해 많은 연구들이 진행되고 있다. 기존 관계형 데이터베이스 시스템을 확장한 공간 데이터베이스 시스템은 확장성에 대한 문제가 있으며, 분산 처리 플랫폼인 하둡을 확장한 SpatialHadoop은 중간 연산 결과를 디스크에 작성하기 때문에 파일 입출력의 오버헤드로 성능이 저하되는 문제가 있다. 본 논문은 인-메모리 기반 분산 처리 프레임워크인 스파크를 확장한 공간 연산 스파크를 제안하였다. 또한 공간 연산 스파크의 성능을 향상시키기 위하여 GPGPU를 결합한 모델을 개발하였다. 공간 연산 스파크는 중간 연산 결과를 메모리에 유지시키는 스파크의 특징을 그대로 사용하고 있으며, GPGPU 기반 공간 연산 스파크의 경우 다수의 PE를 이용하여 병렬처리하기 때문에 효율적으로 공간 연산을 수행할 수 있다. 본 논문은 단일 AMD 시스템에서 공간 연산 스파크와 GPGPU 기반 공간 연산 스파크를 구현하였다. 공간 연산 스파크와 GPGPU 기반 공간 연산 스파크의 성능을 평가하기 위하여 Point-in-Polygon 연산과 Spatial Join 연산을 수행하였으며, SpatialHadoop에 비하여 최대 8배의 성능 향상을 확인하였다.

중소기업을 위한 하둡 클러스터의 프로토타입과 분석 소프트웨어의 통합된 검증 (Integrated Verification of Hadoop Cluster Prototypes and Analysis Software for SMB)

  • 차병래;김남호;이성호;지유강;김종원
    • 한국항행학회논문지
    • /
    • 제18권2호
    • /
    • pp.191-199
    • /
    • 2014
  • 최근 IT 분야의 화두인 클라우드 컴퓨팅과 빅데이터 패러다임을 중소기업(Small and Medium Business: SMB) 차원에서 용이하게 활용하도록 지원하는 시도가 증가하고 있다. 이러한 노력의 일환으로, 본 논문에서는 프라이빗 클라우드 인프라 환경을 대상으로 하둡(Hadoop) 클러스터를 시험적으로 구축하는 프로토타입을 설계하고 구현한다. 프로토타입 구현은 싱글보드, PC, 그리고 서버를 이용하여 각각 수행하고, 그 성능을 테스트한다. 또한, ASA (American Standard Association) Dataset을 이용한 빅데이터 분석을 통해서 구축된 하둡 프로토타입을 활용하는 분석 소프트웨어 시스템의 성능을 통합적으로 검증한 결과를 제시한다. 이를 위해, R, 파이썬, D3, 자바와 같은 오픈소스를 이용하여 분석 소프트웨어 시스템을 구현하고, 테스트를 수행한다.

RHadoop을 이용한 빅데이터 분산처리 시스템 (Big data distributed processing system using RHadoop)

  • 신지은;정병호;임동훈
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권5호
    • /
    • pp.1155-1166
    • /
    • 2015
  • 기하급수적으로 증가하는 대용량 데이터를 저장, 분석하는데 기존 방식으로는 거의 불가능하여 이를 가능케 해 주는 기술이 바로 하둡이다. 최근에 R은 하둡기술을 활용하여 분산처리에 기반한 빅데이터 분석 엔진으로 활용되고 있다. 본 논문에서는 R과 하둡의 통합환경인 RHadoop을 이용하여 실제 데이터와 모의실험 데이터에서 다양한 데이터 크기에 따라 병렬 다중 회귀분석을 구현하고자 한다. 또한, 제안된 RHadoop 플랫폼의 성능을 평가하기 위해 기본 R 패키지의 lm 함수, bigmemory 상에서 유용한 biglm 패키지와 처리 속도를 비교하였다. 실험결과 RHadoop은 데이터 노드가 많을수록 병렬처리로 인해 빠른 처리속도를 보였고 또한 대용량의 데이터에 대해 다른 패키지들보다 빠른 처리속도를 보였다.