• Title/Summary/Keyword: HadGem

Search Result 120, Processing Time 0.033 seconds

A Study on the Implemention of a Mini-MAP Network Interface Module for CIM (CIM을 위한 Mini-MAP 네트워크 접속장치의 구현에 관한 연구)

  • 김현기;이전우;하정현;정하재;채영도
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.10
    • /
    • pp.59-68
    • /
    • 1993
  • This paper describes implemation of 'General-purpose ETRI MAP interface module' (GEM) for Mini-MAP network. GEM operates as a Mini-MAP node in our FA system. To communicate between GEM and programmable devices(PD) such as PLC and CNC, serial communication is used. Application programs of a MiNi-MAP host system control and monitor programmable devices via GEM. GEM is implemented and tested on the basis of the MAP 3.0. TBC in the Nini-MAP board performs the function of the MAC sublayer. The LLC sublayer is implemented according to the specification of Class 3 that includes Type 1 and 3. And the MMS services are designed within the scope of implementation class MAP3. All the softwares are implemented under the real-time multitask OS for real-time application of the Mini-MAP and they are loaded into PROMs at the network board of GEM. We tested the LLC functions to make use of a protocol analyzer for the token-passing protocol. Also the MMS conformance test was carried out by exchanging primitives between GEM and a MMS product that had already passed the conformance test. Therefore GEM is proposed as a network tool of Computer Integrated Manufacturing (CIM) to integrate PDs which don't support MAP functions.

  • PDF

Global Carbon Budget Changes under RCP Scenarios in HadGEM2-CC (HadGEM-CC 모델의 RCP 시나리오에 따른 전지구 탄소수지 변화 전망)

  • Heo, Tae-Kyung;Boo, Kyung-On;Shim, Sungbo;Hong, Jinkyu;Hong, Je-Woo
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.85-97
    • /
    • 2015
  • This study is to investigate future changes in carbon cycle using the HadGEM2-Carbon Cycle simulations driven by $CO_2$ emissions. For experiment, global carbon budget is integrated from the two (8.5/2.6) representative concentration pathways (RCPs) for the period of 1860~2100 by Hadley Centre Global Environmental Model, version 2, Carbon Cycle (Had-GEM2-CC). From 1985 to 2005, total cumulative $CO_2$ amount of anthropogenic emission prescribed as 156 GtC. The amount matches to the observed estimates (CDIAC) over the same period (136 GtC). As $CO_2$ emissions into the atmosphere increase, the similar increasing tendency is found in the simulated atmospheric $CO_2$ concentration and temperature. Atmospheric $CO_2$ concentration in the simulation is projected to be 430 ppm for RCP 2.6 at the end of the twenty-first century and as high as 931 ppm for RCP 8.5. Simulated global mean temperature is expected to rise by $1.6^{\circ}C$ and $3.5^{\circ}C$ for RCP 2.6 and 8.5, respectively. Land and ocean carbon uptakes also increase in proportion to the $CO_2$ emissions of RCPs. The fractions of the amount of $CO_2$ stored in atmosphere, land, and ocean are different in RCP 8.5 and 2.6. Further study is needed for reducing the simulation uncertainty based on multiple model simulations.

Assessment of Frequency Analysis using Daily Rainfall Data of HadGEM3-RA Climate Model (HadGEM3-RA 기후모델 일강우자료를 이용한 빈도해석 성능 평가)

  • Kim, Sunghun;Kim, Hanbeen;Jung, Younghun;Heo, Jun-Haeng
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.51-60
    • /
    • 2019
  • In this study, we performed At-site Frequency Analysis(AFA) and Regional Frequency Analysis(RFA) using the observed and climate change scenario data, and the relative root mean squared error(RMMSE) was compared and analyzed for both approaches through Monte Carlo simulation. To evaluate the rainfall quantile, the daily rainfall data were extracted for 615 points in Korea from HadGEM3-RA(12.5km) climate model data, one of the RCM(Regional Climate Model) data provided by the Korea Meteorological Administration(KMA). Quantile mapping(QM) and inverse distance squared methods(IDSM) were applied for bias correction and spatial disaggregation. As a result, it is shown that the RFA estimates more accurate rainfall quantile than AFA, and it is expected that the RFA could be reasonable when estimating the rainfall quantile based on climate change scenarios.

Projection of Future Sea Level Change Based on HadGEM2-AO Due to Ice-sheet and Glaciers (HadGEM2-AO 기반의 빙상과 빙하에 의한 미래 해수면 변화 전망)

  • Kim, Youngmi;Goo, Tae-Young;Moon, Hyejin;Choi, Juntae;Byun, Young-Hwa
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.367-380
    • /
    • 2019
  • Global warming causes various problems such as the increase of the sea surface temperature, the change of coastlines, ocean acidification and sea level rise. Sea level rise is an especially critical threat to coastal regions where massive population and infrastructure reside. Sea level change is affected by thermal expansion and mass increase. This study projected future sea level changes in the 21st century using the HadGEM2-AO with RCP8.5 scenario. In particular, sea level change due to water mass input from ice-sheets and glaciers melting is studied. Sea level based on surface mass balance of Greenland ice-sheet and Antarctica ice-sheet rose 0.045 m and -0.053 m over the period 1986~2005 to 2081~2100. During the same period, sea level owing to dynamical change on Greenland ice-sheet and Antarctica ice-sheet rose 0.055 m and 0.03 m, respectively. Additionally, glaciers melting results in 0.145 m sea level rise. Although most of the projected sea level changes from HadGEM2-AO are slightly smaller than those from 21 ensemble data of CMIP5, both results are significantly consistent each other within 90% uncertainty range of CMIP5.

Estimates of the Water Cycle and River Discharge Change over the Global Land at the End of 21st Century Based on RCP Scenarios of HadGEM2-AO Climate Model (기후모델(HadGEM2-AO)의 대표농도경로(RCP) 시나리오에 따른 21세기 말 육지 물순환 및 대륙별 하천유출량 변화 추정)

  • Kim, Moon-Hyun;Kang, Hyun-Suk;Lee, Johan;Baek, Hee-Jeong;Cho, ChunHo
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.425-441
    • /
    • 2013
  • This study investigates the projections of water cycle, budget and river discharge over land in the world at the end of twenty-first century simulated by atmosphere-ocean climate model of Hadley Centre (HadGEM2-AO) and total runoff integrating pathways (TRIP) based on the RCP scenario. Firstly, to validate the HadGEM2-AO hydrology, the surface water states were evaluated for the present period using precipitation, evaporation, runoff and river discharge. Although this model underestimates the annual precipitation about 0.4 mm $mon^{-1}$, evaporation 3.7 mm $mon^{-1}$, total runoff 1.6 mm $mon^{-1}$ and river discharge 8.6% than observation and reanalysis data, it has good water balance in terms of inflow and outflow at surface. In other words, it indicates the -0.3 mm $mon^{-1}$ of water storage (P-E-R) compared with ERA40 showing -2.4 mm $mon^{-1}$ for the present hydrological climate. At the end of the twenty-first century, annual mean precipitation may decrease in heavy rainfall region, such as northern part of South America, central Africa and eastern of North America, but for increase over the Tropical Western Pacific and East Asian region. Also it can generally increase in high latitudes inland of the Northern Hemisphere. Spatial patterns of annual evaporation and runoff are similar to that of precipitation. And river discharge tends to increase over all continents except for South America including Amazon Basin, due to increased runoff. Overall, HadGEM2-AO prospects that water budget for the future will globally have negative signal (-8.0~-0.3% of change rate) in all RCP scenarios indicating drier phase than the present climate over land.

Analysis of Sea Surface Temperature Simulation in the Northwestern Pacific and the East Asian Marginal Seas using HadGEM2-AO (HadGEM2-AO를 이용한 북서태평양-동아시아 해역의 표층 수온 모의 특성 분석)

  • Kim, Haejin;Kim, Cheol-Ho;Shin, Hong-Ryeol
    • Ocean and Polar Research
    • /
    • v.38 no.2
    • /
    • pp.89-102
    • /
    • 2016
  • In this study, we evaluated the model performance with respect to Sea Surface Temperature (SST) and Net Heat Flux (NHF) by considering the characteristics of seasonal temperature variation and contributing factors and by analyzing heat budget terms in the Northwestern Pacific and East Asian Marginal Seas ($110^{\circ}E-160^{\circ}E$, $15^{\circ}N-60^{\circ}N$) using the HadGEM2-AO historical run. Annual mean SST of the HadGEM2-AO is about $0.065^{\circ}C$ higher than observations (EN3_v2a) from 1950 to 2000. Since 1960, the model has simulated well the long-term variation of SST and the increasing rate of SST in the model ($0.014^{\circ}C/year$) is comparable with observations ($0.013^{\circ}C/year$). Heat loss from the ocean to the atmosphere was simulated slightly higher in the HadGEM2-AO than that in the reanalysis data on the East Asian Marginal Seas and the Kuroshio region. We investigated the causes of temperature variation by calculating the heat budget equation in the two representative regions. In the central part of the Kuroshio axis ($125^{\circ}E-130^{\circ}E$, $25^{\circ}N-30^{\circ}N$: Region A), both heat loss in the upper mixed layer by surface heat flux and vertical heat advection mainly cause the decrease of heat storage in autumn and winter. Release of latent heat flux through the heat convergence brought about by the Kuroshio contributes to the large surface net heat flux. Positive heat storage rate is mainly determined by horizontal heat advection from March to April and surface net heat flux from May to July. In the central part of the subtropical gyre ($155^{\circ}E-160^{\circ}E$, $22^{\circ}N-27^{\circ}N$: Region B), unlike Region A, vertical heat advection predominantly causes the decrease of heat storage in autumn and winter. In spring and summer, surface heat flux contributes to the increase of heat storage in Region B and the period is two times longer than the period for Region A. In this season, shoaling of the mixed layer depth plays an important role in the increase of SST.

Effects of Continental Evaporation for Precipitation Over East Asia in the Past and the Future of HadGEM2-AO Climate Model (HadGEM2-AO 기후모델에 따른 과거와 미래의 동아시아 강수량에 대한 육지 증발량의 영향)

  • Kim, Jin-Uk;Lee, Johan;Boo, Kyung-On;Shim, Sungbo;Kim, Jee-Eun;Byun, Young-Hwa
    • Atmosphere
    • /
    • v.26 no.4
    • /
    • pp.553-563
    • /
    • 2016
  • Land evaporation contribution to precipitation over East Asia is studied to understand terrestrial moisture source of continental precipitation. Moisture recycling of precipitation relying on terrestrial evaporation is estimated based on the analysis method of Van der Ent et al. (2010). We utilize HadGEM2-AO simulations for the period of 1970~1999 and 2070~2099 from RCP8.5. Globally, 46% of terrestrial precipitation is depending from continental evaporation. 58% of terrestrial evaporation returns as continental precipitation. Over East Asia, precipitation has been affected by local evaporation and transported moisture. The advection of upwind continental evaporation results from the prevailing westerlies from the midwestern of Eurasian continent. For the present-day period, about 66% of the precipitation over the land of East Asia originates from land evaporation. Regionally, the ratios change and the ratios of precipitation terrestrial origin over the Northern inland and Southern coast of East Asia are 82% and 48%, respectively. Seasonally, the continental moisture recycling ratio is larger during summer (JJA) than winter (DJF). According to RCP8.5, moisture recycling ratio is expected to change. At the end of the 21st century, the impact of continental moisture sources for precipitation over East Asia is projected to be reduced by about 5% compared to at the end of 20th century. To understand the future changes, moisture residence time change is investigated using depletion and replenishment time.

Methodological Comparison between Measured and Predicted Resting Energy Expenditure in Korea Obese Women (비만 여성에서 휴대용 간접 열량계를 통한 실측 휴식 대사량과 예측 휴식 대사량의 비교)

  • Song, Mi-Young;Park, Jung-Mi;Kim, Jin-Ah;Ko, Byeong-Pyo;Lee, Myung-Jong;Kim, Ho-Jun
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.5 no.1
    • /
    • pp.57-66
    • /
    • 2005
  • Objectives : The purpose of this study is to examine accuracy of predicted resting energy expenditure (REE), relationship fat free mass (FFM) and REE. Methods : 60 normal, obese women $(body\;mass\;index\;{\geq}25kg/m^2)$ were recruited for this study, they had low calorie diet for 8 weeks. At week 0, 4, and 8, REE was measured by MedGem (indirect calorimeter), Bioelectrical impedance analysis (BIA) using Cunningham equation, and Harris-Benedict (H-B) equation, FFM was also measured by BIA. Results : The REE predicted by BIA was lower than the REE measured by MedGem (MG) in every measurement. The REE predicted by H-B equation predicted REE was lower than that of MG in the second measurement (p<0.01). The REE measured by MedGem was declined after 8 weeks, BIA and H-B equation predicted REE were declined after 4 weeks (p<0.01). H-B equation predicted REE had more significant correlation with the REE measured by MedGem than that of BIA. There was significant correlation between measured REE and FFM, but measured REE declined after 8 weeks, FFM declined after 4 weeks (p<0.01). We derived a prediction equation as follows : REE = 108.36+31.42 (FFM), $R^2=0.23$.

  • PDF

Regional Climate Simulations over East-Asia by using SNURCM and WRF Forced by HadGEM2-AO (HadGEM2-AO를 강제자료로 사용한 SNURCM과 WRF의 동아시아 지역기후 모의)

  • Choi, Suk-Jin;Lee, Dong-Kyou;Oh, Seok-Geun
    • Journal of the Korean earth science society
    • /
    • v.32 no.7
    • /
    • pp.750-760
    • /
    • 2011
  • In this study, the reproducibility of the simulated current climate by using two regional climate models, such as Seoul National University Regional Climate Model (SNURCM) and Weather Resuearch and Forecasting (WRF), is evaluated in advance to produce the standard regional climate scenario of future climate. Within the evaluation framework of a COordinated Regional climate Downscaling EXperiment (CORDEX), 28-year-long (1978-2005) regional climate simulation was conducted by using the Hadley Centre Global Environmental Model (HadGEM2-AO) global simulation data of the National Institute of Meteorological Research (NIMR) as a lateral boundary forcing. The simulated annual surface temperatures were in good agreement with the observation; the spatial correlation coefficients between each model and observation were over 0.98. The cold bias, however, were shown over the northern boundary in the both simulated results. In evaluation of the simulated precipitation, the skill was reasonable and good. The spatial correlation coefficients for the precipitation over the land area were 0.85 and 0.79 in SNURCM and WRF, respectively. It is noted that two regional climate models (RCMs) have different characteristics for the distribution of precipitation over equatorial and midlatitude areas. SNURCM shows better distribution of the simulated precipitation associated with the East Asia summer monsoon in the mid-latitude areas, but WRF shows better in the equatorial areas in comparison to each other. The simulated precipitation is overestimated in summer season (JJA) rather than in spring season (MAM), whereas the spatial distribution of the precipitation in spring season corresponds to the observation better than in summer season. Also the RCMs were capable of reproducing the annual variability of the maximum amount and its timing in July, in which the skills over the inland area were in better agreement with the observation than over the maritime area. The simulated regional climates, however, have the limitation to represent the number of days for extremely hot temperature and heavy rainfall over South Korea.

The Global Warming Hiatus Simulated in HadGEM2-AO Based on RCP8.5 (HadGEM2-AO RCP8.5 모의에서 나타난 지구온난화 멈춤)

  • Wie, Jieun;Moon, Byung-Kwon;Kim, Ki-Young;Lee, Johan
    • Journal of the Korean earth science society
    • /
    • v.35 no.4
    • /
    • pp.249-258
    • /
    • 2014
  • Despite the greenhouse gases like carbon dioxide have steadily increased in atmosphere, the overall trend of the global average surface air temperature has stalled during the last decade (2002-present). This phenomenon is often called hiatus or warming pause, which is challenging the prevailing view that anthropogenic forcing causes warming environment. Our study characterized the hiatus by analyzing the HadGEM2-AO (95 yrs) simulation data based on RCP8.5 scenario. The PC2 time series from the EOF of the zonal mean vertical ocean temperature has been defined as the index that represents the warming pause. The relationship between the hiatus, ENSO and the changes in climate system are identified by utilizing the newly defined PC2. Since the La Nina index (defined as the negative of NINO3 index) leads PC2 by about 11 months, it may be possible that the La Nina causes the warming to be interrupted. We also show that the cooling of the climate system closed tied to the heat penetration into the deep ocean, indicating the weakening the warming rate is due to the oceanic heat uptake. Finally, the global warming hiatus is characterized by the anomalous warming in Arctic region as well as the intensification of the trade wind in the equatorial Pacific.