• Title/Summary/Keyword: Habitat Suitability

Search Result 194, Processing Time 0.032 seconds

Analysis of Land Suitability and Ecological Environment Using GIS Focused on the Evaluation Model for Designating of Natural Ecological Preservation Zone (지리정보체계를 이용한 생태환경분석 및 적지분석: 자연생태계 보전지역 설정 및 평가 모형을 중심으로)

  • Lee, Myungwoo
    • Journal of Environmental Impact Assessment
    • /
    • v.6 no.2
    • /
    • pp.61-80
    • /
    • 1997
  • This study tried to propose the guidelines for the ecological preservation zoning in Korea. So some related laws and regulations were inspected, which were Natural Environment Preservation Act, Nature Park Act, Cultural Asset Conservation Act, Forest Act and Urban Planning Act. In these acts, I could find several concepts related to the ecosystem that are described as the protection area. But there aren't detailed and practical characteristics in those concepts. So for making the practical concept of ecosystem preservation, I considered Multiple Use Module, Wildlife habitat model, and Environmental evaluation model. Thorough this step, the process and methodology was established for evaluating and analysing. The potentiality of the GIS system was inspected. So the TM5 scene of the site was acquired and processed by ER-Mapper, Idrisi, Arc/Info and Arcview. And several digitized data were input by scanning and vecterizing. The Erdas format was mostly exchangeable to any program. The site is the Byonsan Peninsula National Park. The forest stand information and topographic data were digitized, types of which are forest year, DBH, density, slope, aspect etc. And also the watershed boundary, roads and paths, natural and cultural resources were mapped and analysed. Modelling of preservation suitability found the dispersed patterns for the best suitable zone through all the site. And the development potential areas were checked on downwatershed. This patterns are thought to result from the forest location for the wildlife habitat and the low altitude and no-steep slopes for developing. And Early warning system concept was introduced by overlapping these two patterns on the both potential area. As the conclusions, I proposed that the preservation zone be assigned according to the watershed unit as the main ecosystem zone. This main area should be linked by the eco-corridor through the point type eco-system. Finally, I thought the comprehensive information system should be established for making the rational and efficient decision making in natural area.

  • PDF

Analysis of Physical Disturbance and Habitat Suitability Characteristics according to Stable Channel Design (안정하도 설계에 따른 물리적 교란과 서식처 특성 분석)

  • Lee, Woong Hee;Choi, Heung Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.8-8
    • /
    • 2017
  • 본 연구는 원주천 16 km 구간을 대상으로 안정하도 설계에 따른 하상의 변동과 그에 따른 물리적 생물학적 교란 영향을 분석하였다. 안정하도 설계를 위한 방법으로 구간별 안정경사관계곡선을 도출하였으며, 현재 하도의 구간별 경사와 비교하여 안정/불안정을 판단하였다. 원주천 대상구간은 총 20개구간 중 17개 구간이 안정한 하상경사로 나타났으며, 하류부 2개 지점과 상류부 1개 지점에서 불안정 경사로 나타났다. 불안정 구간의 안정하도 설계를 위한 방법으로는 하천시설물의 도입을 통한 하상변동의 유도로 안정경사를 설계하는 방법과 하도의 준설과 하상보호공의 설치에 따른 안정경사 설계 방법을 이용하였다. 하천시설물의 도입을 통한 안정하도 설계의 경우 2개의 구간에서 추가적인 안정하도의 설계로 총 19개 구간이 안정하도로 설계되었으며, 하도의 준설과 하상보호공의 설치에 따른 안정하도 설계의 경우 20개 구간 전부에서 안정경사로 설계되었다. 아울러 안정하도 설계에 따른 하천의 물리적 생물학적 교란 양상을 분석하기 위해 물리적 교란개선 평가 결과와 물리서식처의 변화를 분석하였다. PHABSIM 모형을 이용하여 원주천의 최우점종인 참갈겨니를 대상으로 평수량에 대한 서식적합도 (HS, habitat suitability)와 가중가용면적 (WUA, weighted usable area)의 변화를 분석하였다. 현재 상태와 5년의 하상변동 모의 후의 평가 분석결과를 하천시설물 도입과 하도의 준설에 따른 5년경과 후의 예측평가 결과와 비교 분석하였다. 하천시설물의 도입에 따른 안정하도 설계의 경우 물리적 교란개선 평가 결과는 현재상태보다 소폭 개선되었으며, 물리서식처는 현재상태 보다는 감소하나, 현재의 5년경과 후와 유사하게 나타났다. 하도준설과 하상보호공의 설치에 따른 안정하도 설계의 경우 물리적 교란개선 평가 결과는 미약하게 감소하였다. 물리서식처는 현재상태와 유사하게 나타났으며, 현재의 5년경과 후 보다는 증가하는 것으로 나타났다. 따라서 안정하도 평가와 물리적 교란개선 평가 및 물리서식처 분석을 통한 하천의 안정성과 건강성 증대 방안을 도출하였다.

  • PDF

Basic reproduction number of African swine fever in wild boars (Sus scrofa) and its spatiotemporal heterogeneity in South Korea

  • Lim, Jun-Sik;Kim, Eutteum;Ryu, Pan-Dong;Pak, Son-Il
    • Journal of Veterinary Science
    • /
    • v.22 no.5
    • /
    • pp.71.1-71.12
    • /
    • 2021
  • Background: African swine fever (ASF) is a hemorrhagic fever occurring in wild boars (Sus scrofa) and domestic pigs. The epidemic situation of ASF in South Korean wild boars has increased the risk of ASF in domestic pig farms. Although basic reproduction number (R0) can be applied for control policies, it is challenging to estimate the R0 for ASF in wild boars due to surveillance bias, lack of wild boar population data, and the effect of ASF-positive wild boar carcass on disease dynamics. Objectives: This study was undertaken to estimate the R0 of ASF in wild boars in South Korea, and subsequently analyze the spatiotemporal heterogeneity. Methods: We detected the local transmission clusters using the spatiotemporal clustering algorithm, which was modified to incorporate the effect of ASF-positive wild boar carcass. With the assumption of exponential growth, R0 was estimated for each cluster. The temporal change of the estimates and its association with the habitat suitability of wild boar were analyzed. Results: Totally, 22 local transmission clusters were detected, showing seasonal patterns occurring in winter and spring. Mean value of R0 of each cluster was 1.54. The estimates showed a temporal increasing trend and positive association with habitat suitability of wild boar. Conclusions: The disease dynamics among wild boars seems to have worsened over time. Thus, in areas with a high elevation and suitable for wild boars, practical methods need to be contrived to ratify the control policies for wild boars.

Northern distribution limits and future suitable habitats of warm temperate evergreen broad-leaved tree species designated as climate-sensitive biological indicator species in South Korea

  • Sookyung, Shin;Jung-Hyun, Kim;Duhee, Kang;Jin-Seok, Kim;Hong Gu, Kang;Hyun-Do, Jang;Jongsung, Lee;Jeong Eun, Han;Hyun Kyung, Oh
    • Journal of Ecology and Environment
    • /
    • v.46 no.4
    • /
    • pp.292-303
    • /
    • 2022
  • Background: Climate change significantly influences the geographical distribution of plant species worldwide. Selecting indicator species allows for better-informed and more effective ecosystem management in response to climate change. The Korean Peninsula is the northernmost distribution zone of warm temperate evergreen broad-leaved (WTEB) species in Northeast Asia. Considering the ecological value of these species, we evaluated the current distribution range and future suitable habitat for 13 WTEB tree species designated as climate-sensitive biological indicator species. Results: Up-to-date and accurate WTEB species distribution maps were constructed using herbarium specimens and citizen science data from the Korea Biodiversity Observation Network. Current northern limits for several species have shifted to higher latitudes compared to previous records. For example, the northern latitude limit for Stauntonia hexaphylla is higher (37° 02' N, Deokjeokdo archipelago) than that reported previously (36° 13' N). The minimum temperature of the coldest month (Bio6) is the major factor influencing species distribution. Under future climate change scenarios, suitable habitats are predicted to expand toward higher latitudes inland and along the western coastal areas. Conclusions: Our results support the suitability of WTEB trees as significant biological indicators of species' responses to warming. The findings also suggest the need for consistent monitoring of species distribution shifts. This study provides an important baseline dataset for future monitoring and management of indicator species' responses to changing climate conditions in South Korea.

Estimation of Habitat Suitability Index of Fish Species in the Nakdong River Water System (낙동강 수계에서 어류의 서식지적합도지수(HSI) 산정)

  • Lee, Jong Jin;Hur, Jun Wook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.485-485
    • /
    • 2022
  • 본 연구에서는 낙동강 수계에서 어류의 수생태 건강성이 악화된 지점, 장기간 수질이 악화되거나 수위가 저하된 지점, 보호종이 지정된 지점을 중심으로 어류 서식지적합도지수(Habitat Suitability index, HSI)를 산정하였다. 현장조사는 하천유량이 감소하는 4월부터 6월 사이 총 4회 실시하였고, 투망과 족대를 이용해 어류 채집하였다. 어류의 서식지 특성 조사를 위해 채집 지점에서 수심, 유속, 하상재료를 조사하고 기록하여 엑셀 자료를 구축하였다. 본 연구에서는 실제 하천 단면의 물리적 특성을 잘 반영할 수 있는 WDFW(Washington Dept. of Fish and Wildlife) 방법을 이용하여 어류 서식처적합도지수를 산정하였다. 낙동강 수계 10개 지점에서 실시한 어류 조사 결과는 전체 9과 35종 2,227개체이다. 낙동강 수계 10개 지점의 대표어종을 선정하기 위해 법정보호종, 유영성종, 고유종, 기타 중요종을 검토한 다음 각 지점별 대표어종, 대리어종, 유사어종 등을 산정하였다. 낙동강 수계 전반에 걸쳐 피라미가 우점종으로 조사되었으며, 낙동강 상류지역에는 모래무지, 하류에는 수수미꾸리와 유사한 종의 출현빈도가 높은 것으로 나타났다. 낙동강 전역에 걸쳐 서식하고 있는 피라미는 가능한 대표어종에서 제외하고, 보호종과 고유종을 중심으로 대표어종을 선정하였다. 그 결과 낙동강 상류 내성천 합류전 지점에서는 피라미, 내성천에서 참마자, 위천에서 참몰개, 갑천에서 돌고기, 황강에서 모래무지, 금호강에서 돌마자, 밀양강에서 쉬리. 남강에서 피라미, 형산강에서 참갈겨니, 태화강에서 피라미로 대표어종을 각각 결정하였다. 다음으로 각 지점별 대표어종에 대한 수심, 유속, 하상재료 조사 자료를 이용해 대표어종에 대한 서식지적합도지수를 산정하였다. 최근 갈수기 유량 감소로 생태계가 위협받는 기간이 증가하고 있다. 하천의 정상적인 생태기능 유지를 위한 최소한의 유량이 필요하고, 이를 확보하기 위한 노력이 요구된다. 어류의 서식지적합도지수를 활용해 갈수기 어류 서식에 필요한 최소한의 유량을 결정하거나, 수생태계 복원을 위한 기초자료로 활용성이 높을 것으로 판단된다.

  • PDF

A Study on the Development of "Bufo gargarizans" Habitat Suitability Index(HSI) (두꺼비 서식지 적합성 지수(HSI) 모델개발을 위한 연구)

  • Cho, Gun-Young;Koo, Bon-Hak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.2
    • /
    • pp.23-38
    • /
    • 2022
  • This study investigates the characteristics and physical habitat requirements for each Bufo gargarizans life history through a literature survey. After deriving variables for each component of Bufo gargarizans, in order to reduce regional deviations from eight previously studied literature research areas for deriving the criteria for variables, a total of 12 natural habitats of Bufo gargarizanss are selected as spatial ranges by selecting four additional sites such as Umyeonsan Ecological Park in Seoul, Wonheungibangjuk in Cheongju in the central region, Changnyeong Isan Reservoir in the southern region, and Mangwonji in Daegu. This study presents Bufo gargarizans SI, a species endemic to Korea, whose population is rapidly declining due to large-scale housing site development and road development, and develops a Bufo gargarizans HSI model accordingly to improve the function of the damaged Bufo gargarizans habitat and to present an objective basis for site selection of alternative habitat. At the same time, it provides basic data for adaptive management and follow-up monitoring. The three basic habitat requirements of amphibians, the physical habitat requirements of Bufo gargarizans, synthesized with shelter, food, and water, and the characteristics of each life history, are classified into five components by adding space and threats through literature research and expert advice. Variables are proposed by synthesizing and comparing the general characteristics of amphibians, among the previously studied single species of amphibians, the components of HSI of goldfrogs and Bufo gargarizans, and the ecological and physical environmental characteristics of Bufo gargarizans. Afterwards, through consultation with an amphibian expert, a total of 10 variables are finally presented by adjacent forest area(ha), the distance between spawning area and the nearest forest land(m), the soil, the distance from the wetland(m), the forest layered structure, the low grassland space, the permanent wetland area(ha), shoreline slope(%), PH, presence of predators, distance from road(m), presence or absence of obstacles. n order to derive the final criteria for each of the 10 variables, the criteria(alternative) for each variable are presented through geographic information analysis of the site survey area and field surveys of the previously studied literature research area. After a focus group interview(FGI) of 30 people related to the Bufo gargarizans colony in Cheongju, a questionnaire and in-depth interviews with three amphibians experts are conducted to verify and supplement the criteria for each final variable. Based on the finally developed Bufo gargarizans HSI, the Bufo gargarizans habitat model is presented through the SI graph model and the drawing centering on the Bufo gargarizans spawning area

Eco-Hydrologic Assessment of Maintenance Water Supply on Oncheon Stream (온천천 유지용수 공급에 따른 생태수문환경 변화분석)

  • Jang, Ju-Hyoung;Kim, Sang-Dan;Sung, Ki-June;Shin, Hyun-Suk
    • Journal of Environmental Science International
    • /
    • v.16 no.8
    • /
    • pp.973-983
    • /
    • 2007
  • The eco-hydrologic effects of maintenance water supply on Oncheon stream are studied using hydrologic, hydraulic and ecologic models. SWMM (Storm Water Management Model) is used for long-term simulation of runoff quantity and water quality from Oncheon stream watershed. Using the output hydrologic variables from SWMM, HEC-RAS (River Analysis System) is then used to simulate the hydraulics of water flow through Oncheon stream channels. Such hydrologic, hydraulic and water quality output variables from SWMM and HEC-RAS are served as input data to execute PHABSIM (Physical Habitat Simulation) for the purpose of predicting the micro-habitat conditions in rivers as a function of stream flow and the relative suitability of those conditions to aquatic life. It is observed from the PHABSIM results that the weighted usable area for target fishes has the maximum value at $2m^3/s$ of instream flow. However, mid and down stream areas that have concrete river bed and covered region are unsuitable for fish habitat regardless of instream flow increment. The simulation results indicate that the simple maintenance water supply is limited in its effect to improve the ecological environment in Oncheon stream. Therefore, it is imperative to improve water quality and to recover habitat conditions simultaneously.

Climate Change Impact Assessment of Abies nephrolepis (Trautv.) Maxim. in Subalpine Ecosystem using Ensemble Habitat Suitability Modeling (서식처 적합모형을 적용한 고산지역 분비나무의 기후변화 영향평가)

  • Choi, Jae-Yong;Lee, Sang-Hyuk
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.1
    • /
    • pp.103-118
    • /
    • 2018
  • Ecosystems in subalpine regions are recognized as areas vulnerable to climatic changes because rainfall and the possibility of flora migration are very low due to the characteristics of topography in the regions. In this context, habitat niche was formulated for representative species of arbors in subalpine regions in order to understand the effects of climatic changes on alpine arbor ecosystems. The current potential habitats were modeled as future change areas according to the climatic change scenarios. Based on the growth conditions and environmental characteristics of the habitats, the study was conducted to identify direct and indirect causes affecting the habitat reduction of Abies nephrolepis. Diverse model algorithms for explanation of the relationship between the emergence of biological species and habitat environments were reviewed to construct the environmental data suitable for the six models(GLM, GAM, RF, MaxEnt, ANN, and SVM). Weights determined through TSS were applied to the six models for ensemble in an attempt to minimize the uncertainty of the models. Based on the current climate determined by averaging the climates over the past 30years(1981~2010) and the HadGEM-RA model was applied to fabricate bioclimatic variables for scenarios RCP 4.5 and 8.5 on the near and far future. The results of models of the alpine region tree species studied were put together and evaluated and the results indicated that a total of eight national parks such as Mt. Seorak, Odaesan, and Hallasan would be mainly affected by climatic changes. Changes in the Baekdudaegan reserves were analyzed and in the results, A. nephrolepis was predicted to be affected the most in the RCP8.5. The results of analysis as such are expected to be finally utilizable in the survey of biological species in the Korean peninsula, restoration and conservation strategies considering climatic changes as the analysis identified the degrees of impacts of climatic changes on subalpine region trees in Korean peninsula with very high conservation values.

Estimation of an Optimum Ecological Stream Flow in the Banbyeon Stream Using PHABSIM - Focused on Zacco platypus and Squalidus chankaensis tsuchigae - (PHABSIM을 이용한 반변천 하천생태유량 산정 - 피라미, 참몰개를 대상으로 -)

  • Park, Jinseok;Jang, Seongju;Song, Inhong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.6
    • /
    • pp.51-62
    • /
    • 2020
  • The objective of this study was to estimate an optimum ecological flow rate in the Banbyeon stream based on the two representative fish species. Hydraulic stream environment was simulated with HEC-RAS for two water flow regimes and used for the PHABSIM hydraulic simulation. A dominant species of Zacco platypus and an endemic species of Squalidus chankaensis tsuchigae were selected as the representative fishes whose habitat conditions were evaluated for the spawning and adult stages. Weighted usable area (WUA) was estimated based on habitat suitability index (HSI) and PHABSIM habitat simulation. Overall deep water zone in the stream demonstrated greater WUA which implies better habitat status. The estimated WUA for Zacco platypus as the dominant species was about five times greater than Squalidus chankaensis tsuchigae at the stream flow of 12 ㎥/s. The optimum ecological flow rates were 15 ㎥/s and 25 ㎥/s for the respective spawning and adult stages of Zacco platypus, while 5 ㎥/s was estimated for both the life cycles of Squalidus chankaensis tsuchigae. Assuming that the dominant species may survive better in wider flow regimes, the optimum ecological flow rate should be determined rater based on the endemic species and flow rate of 5 ㎥/s was suggested for the Banbyeon stream.

Impact on Fish Community by Restoration of Ecological Waterway using Physical Habitat Simulation (물리서식처 분석을 통한 생태 물길 복원이 다양한 군집종에 미치는 영향)

  • Choi, Heung Sik;Choi, Jonggeun;Choi, Byungwoong
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • This study performed the impact of ecological waterway on fish community in a reach of the Dal River, Korea. Fish monitoring revealed that 9 fish species are dominant, namely Zacco platypus, Coreoleuciscus splendidus, Zacco koreanus, Pungtungia herzi, Acheilognathus yamatsutae, Rhinogobius brunneus, Tanakia signifer, Gobiobotia macrocephala, and Pseudopungtungia tenuicorpus, and account for 95% of the total fish community. The River2D model was used for the computation of the flow and the HSI model for the habitat simulation. The restoration of the waterway performed through the small dam removal, the formation of the pool-riffle structure, and the change of the bed elevation and width. Simulation results indicated that the restoration of the ecological waterway effects significantly increased by about 16% for the WUA (Weighted Usable Area) of the total fish community in optimal ecological flow conditions ($Q=7.0m^3/s$). The restoration of the ecological waterway is more advantageous to fish community.