Browse > Article
http://dx.doi.org/10.4142/jvs.2021.22.e71

Basic reproduction number of African swine fever in wild boars (Sus scrofa) and its spatiotemporal heterogeneity in South Korea  

Lim, Jun-Sik (College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University)
Kim, Eutteum (College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University)
Ryu, Pan-Dong (College of Veterinary Medicine, Seoul National University)
Pak, Son-Il (College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University)
Publication Information
Journal of Veterinary Science / v.22, no.5, 2021 , pp. 71.1-71.12 More about this Journal
Abstract
Background: African swine fever (ASF) is a hemorrhagic fever occurring in wild boars (Sus scrofa) and domestic pigs. The epidemic situation of ASF in South Korean wild boars has increased the risk of ASF in domestic pig farms. Although basic reproduction number (R0) can be applied for control policies, it is challenging to estimate the R0 for ASF in wild boars due to surveillance bias, lack of wild boar population data, and the effect of ASF-positive wild boar carcass on disease dynamics. Objectives: This study was undertaken to estimate the R0 of ASF in wild boars in South Korea, and subsequently analyze the spatiotemporal heterogeneity. Methods: We detected the local transmission clusters using the spatiotemporal clustering algorithm, which was modified to incorporate the effect of ASF-positive wild boar carcass. With the assumption of exponential growth, R0 was estimated for each cluster. The temporal change of the estimates and its association with the habitat suitability of wild boar were analyzed. Results: Totally, 22 local transmission clusters were detected, showing seasonal patterns occurring in winter and spring. Mean value of R0 of each cluster was 1.54. The estimates showed a temporal increasing trend and positive association with habitat suitability of wild boar. Conclusions: The disease dynamics among wild boars seems to have worsened over time. Thus, in areas with a high elevation and suitable for wild boars, practical methods need to be contrived to ratify the control policies for wild boars.
Keywords
African swine fever; wild boar; space-time clustering; basic reproduction number; South Korea;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Marcon A, Linden A, Satran P, Gervasi V, Licoppe A, Guberti V. R-0 estimation for the African swine fever epidemics in wild boar of Czech Republic and Belgium. Vet Sci. 2020;7(1):2.   DOI
2 Podgorski T, Borowik T, Lyjak M, Wozniakowski G. Spatial epidemiology of African swine fever: host, landscape and anthropogenic drivers of disease occurrence in wild boar. Prev Vet Med. 2020;177:104691.   DOI
3 National Institute of Biological Resources. 2017 Wildlife Survey. Incheon: National Institute of Biological Resources; 2017.
4 Evans JD. Straightforward Statistics for the Behavioral Sciences. Belmont: Thomson Brooks/Cole Publishing Co.; 1996.
5 Haut ER, Pronovost PJ. Surveillance bias in outcomes reporting. JAMA. 2011;305(23):2462-2463.   DOI
6 Tango T. Spatial scan statistics can be dangerous. Stat Methods Med Res. 2021;30(1):75-86.   DOI
7 Chenais E, Stahl K, Guberti V, Depner K. Identification of wild boar-habitat epidemiologic cycle in African swine fever epizootic. Emerg Infect Dis. 2018;24(4):810-812.   DOI
8 Schulz K, Staubach C, Blome S, Viltrop A, Nurmoja I, Conraths FJ, et al. Analysis of Estonian surveillance in wild boar suggests a decline in the incidence of African swine fever. Sci Rep. 2019;9(1):8490.   DOI
9 Lim JS, Cho SI, Ryu S, Pak SI. Interpretation of the basic and effective reproduction number. J Prev Med Public Health. 2020;53(6):405-408.   DOI
10 Pepin KM, Golnar AJ, Abdo Z, Podgorski T. Ecological drivers of African swine fever virus persistence in wild boar populations: insight for control. Ecol Evol. 2020;10(6):2846-2859.   DOI
11 Iglesias I, Perez AM, Sanchez-Vizcaino JM, Munoz MJ, Martinez M, de la Torre A. Reproductive ratio for the local spread of highly pathogenic avian influenza in wild bird populations of Europe, 2005-2008. Epidemiol Infect. 2011;139(1):99-104.   DOI
12 Robert A, Kucharski AJ, Gastanaduy PA, Paul P, Funk S. Probabilistic reconstruction of measles transmission clusters from routinely collected surveillance data. J R Soc Interface. 2020;17(168):20200084.   DOI
13 Probst C, Globig A, Knoll B, Conraths FJ, Depner K. Behaviour of free ranging wild boar towards their dead fellows: potential implications for the transmission of African swine fever. R Soc Open Sci. 2017;4(5):170054.   DOI
14 Iglesias I, Munoz MJ, Montes F, Perez A, Gogin A, Kolbasov D, et al. Reproductive ratio for the local spread of African swine fever in wild boars in the Russian Federation. Transbound Emerg Dis. 2016;63(6):e237-e245.   DOI
15 Anderson RM, May RM. Infectious Diseases of Humans: Dynamics and Control. Oxford: Oxford University Press; 1992.
16 Cho HK, Kim ET, Jung BS, Pak SI. A preliminary investigation into the decomposition rate of wild boar carcasses in forest habitats. J Prev Vet Med. 2021;45(1):44-52.   DOI
17 Pepin KM, Golnar A, Podgorski T. Social structure defines spatial transmission of African swine fever in wild boar. J R Soc Interface. 2021;18(174):20200761.   DOI
18 Guzzetta G, Marques-Toledo CA, Rosa R, Teixeira M, Merler S. Quantifying the spatial spread of dengue in a non-endemic Brazilian metropolis via transmission chain reconstruction. Nat Commun. 2018;9(1):2837.   DOI
19 Probst C, Gethmann J, Amendt J, Lutz L, Teifke JP, Conraths FJ. Estimating the postmortem interval of wild boar carcasses. Vet Sci. 2020;7(1):6.   DOI
20 Vergne T, Andraud M, Bonnet S, De Regge N, Desquesnes M, Fite J, et al. Mechanical transmission of African swine fever virus by Stomoxys calcitrans: insights from a mechanistic model. Transbound Emerg Dis. 2021;68(3):1541-1549.   DOI
21 Lim JS, Vergne T, Pak SI, Kim E. Modelling the spatial distribution of ASF-positive wild boar carcasses in South Korea using 2019-2020 national surveillance data. Animals (Basel). 2021;11(5):1208.
22 Dixon LK, Stahl K, Jori F, Vial L, Pfeiffer DU. African swine fever epidemiology and control. Annu Rev Anim Biosci. 2020;8(1):221-246.   DOI
23 Andraud M, Bougeard S, Chesnoiu T, Rose N. Spatiotemporal clustering and Random Forest models to identify risk factors of African swine fever outbreak in Romania in 2018-2019. Sci Rep. 2021;11(1):2098.   DOI
24 Vergne T, Guinat C, Pfeiffer DU. Undetected circulation of African swine fever in wild boar, Asia. Emerg Infect Dis. 2020;26(10):2480-2482.   DOI
25 Jo YS, Gortazar C. African swine fever in wild boar: assessing interventions in South Korea. Transbound Emerg Dis. 2021. Epub ahead of print. doi: 10.1111/tbed.14106.   DOI
26 Delamater PL, Street EJ, Leslie TF, Yang YT, Jacobsen KH. Complexity of the basic reproduction number (R0). Emerg Infect Dis. 2019;25(1):1-4.   DOI
27 Gabriel C, Blome S, Malogolovkin A, Parilov S, Kolbasov D, Teifke JP, et al. Characterization of African swine fever virus Caucasus isolate in European wild boars. Emerg Infect Dis. 2011;17(12):2342-2345.   DOI
28 Probst C, Gethmann J, Amler S, Globig A, Knoll B, Conraths FJ. The potential role of scavengers in spreading African swine fever among wild boar. Sci Rep. 2019;9(1):11450.   DOI
29 Kulldorff M, Heffernan R, Hartman J, Assuncao R, Mostashari F. A space-time permutation scan statistic for disease outbreak detection. PLoS Med. 2005;2(3):e59.   DOI
30 Birant D, Kut A. ST-DBSCAN: an algorithm for clustering spatial-temporal data. Data Knowl Eng. 2007;60(1):208-221.   DOI
31 Ministry of Environment. Standard Operation Procedures for African Swine Fever in Wild Boar. Sejong: Ministry of Environment; 2019.
32 Choe S, Cha RM, Yu DS, Kim KS, Song S, Choi SH, et al. Rapid spread of classical swine fever virus among South Korean wild boars in areas near the border with North Korea. Pathogens. 2020;9(4):244.   DOI
33 Loi F, Cappai S, Laddomada A, Feliziani F, Oggiano A, Franzoni G, et al. Mathematical approach to estimating the main epidemiological parameters of African swine fever in wild boar. Vaccines (Basel). 2020;8(3):8.
34 Blome S, Gabriel C, Dietze K, Breithaupt A, Beer M. High virulence of African swine fever virus Caucasus isolate in European wild boars of all ages. Emerg Infect Dis. 2012;18(4):708.
35 Korea National Park Service. National Park Wild Boar Habitat Survey Research. Wonju: Korea National Park Service; 2019.
36 Kim ET, Pak SI. Species distribution modeling for wild boar (Sus scropa) in the Republic of Korea using MODIS data. J Prev Vet Med. 2020;44(2):89-95.   DOI
37 R Core Team. R: a Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; 2021.
38 Morelle K, Podgorski T, Prevot C, Keuling O, Lehaire F, Lejeune P. Towards understanding wild boar Sus scrofa movement: a synthetic movement ecology approach. Mammal Rev. 2015;45(1):15-29.   DOI
39 O'Neill X, White A, Ruiz-Fons F, Gortazar C. Modelling the transmission and persistence of African swine fever in wild boar in contrasting European scenarios. Sci Rep. 2020;10(1):5895.   DOI
40 Yang A, Schlichting P, Wight B, Anderson WM, Chinn SM, Wilber MQ, et al. Effects of social structure and management on risk of disease establishment in wild pigs. J Anim Ecol. 2021;90(4):820-833.   DOI