조류는 복잡한 생태계의 상태를 평가하는 대표적인 생물 지표종으로써, 서식지 관리를 통한 효율적인 보전이 필요하다. 이에 본 연구는 창원시를 대상으로 산림성 조류의 서식지에 영향을 미치는 서식지 변수를 GIS기법으로 추출하여 서식지 예측 모형을 제시함으로써 향후 서식지 보존을 위한 유용한 기초자료를 제공하고자 하였다. 연구결과, 135지점에 출현한 산림성 조류는 총 5목 15과 26종 922개체로 나타났다. 또한 산림성 조류의 종다양도를 종속변수, 서식지 변수들을 독립변수로 하여 서식지 예측모형을 구축한 결과, '식생지수', '계곡으로부터의 거리', '혼효림으로부터의 거리', '밭 면적' 등 4개의 변수가 유의성을 가지는 것으로 분석되었으며, 이들의 설명력은 51.3%로 나타났다. 다음으로 모형의 정확도를 검증한 결과, 상관계수 0.735, 절대평균오차비율(MAPE) 20.7%로 비교적 합리적인 예측으로 판단되었으며, 구축된 모형을 활용하여 서식지 예측지도를 제작하였다. 이 지도는 현장조사를 근거로 조사되지 않은 지역의 종다양도를 예측 할 수 있어 향후 서식지 보존을 위한 전략수립에 유용한 기초자료로 활용 가능하리라 판단된다.
도시화로 인한 서식지의 훼손과 단편화는 전세계적으로 양서류에게 큰 위협이 되고 있다. 본 연구에서는 도시화가 청개구리의 분포와 수도에 미치는 영향을 파악하고자, 인천와 그 주변에 위치한 18개 논에서 청음으로 청개구리의 수도를 측정하고 서식지 환경과 토지 이용을 조사하였다. 인천과 주변 논에서 청개구리의 수도는 0 - 17마리 / 서식지 또는 0 - 41마리 / ha이었다. 청개구리의 수도는 서식지와 도로와의 거리가 멀어짐에 따라서 서식지의 둘레길이 면적이 켜질수록 증가하였다. 일반적인 예측과는 달리 청개구리의 밀도는 서식지의 크기와 음의 상관을, 주변의 토지이용 강도와는 양의 상관관계를 보였다. 따라서 도시화에 의하여 서식지 면적이 감소하고 주변이 개발됨에 따라서 청개구리리가 좁은 서식지로 집중화될 수 있다고 생각된다.
Proceedings of the National Institute of Ecology of the Republic of Korea
/
제4권4호
/
pp.159-176
/
2023
The conservation of the raccoon dog (Nyctereutes procyonoides) in South Korea requires the protection and preservation of natural habitats while additionally ensuring coexistence with human activities. Applying habitat map modeling techniques provides information regarding the distributional patterns of raccoon dogs and assists in the development of future conservation strategies. The purpose of this study is to generate potential habitat distribution maps for the raccoon dog in South Korea using geospatial technology-based models. These models include the frequency ratio (FR) as a bivariate statistical approach, the group method of data handling (GMDH) as a machine learning algorithm, and convolutional neural network (CNN) and long short-term memory (LSTM) as deep learning algorithms. Moreover, the imperialist competitive algorithm (ICA) is used to fine-tune the hyperparameters of the machine learning and deep learning models. Moreover, there are 14 habitat characteristics used for developing the models: elevation, slope, valley depth, topographic wetness index, terrain roughness index, slope height, surface area, slope length and steepness factor (LS factor), normalized difference vegetation index, normalized difference water index, distance to drainage, distance to roads, drainage density, and morphometric features. The accuracy of prediction is evaluated using the area under the receiver operating characteristic curve. The results indicate comparable performances of all models. However, the CNN demonstrates superior capacity for prediction, achieving accuracies of 76.3% and 75.7% for the training and validation processes, respectively. The maps of potential habitat distribution are generated for five different levels of potentiality: very low, low, moderate, high, and very high.
Excessive development and urbanization have destroyed animal, plant, habitats and reduced biodiversity. In order to preserve species diversity, habitat prediction studies are have been conducted at home and overseas using various modeling techniques. This study was conducted to suggest optimal habitat modeling research by comparing HSI and MaxEnt, which are widely used among habitat modeling techniques. The study was targeted on the endangered species of Prionailurus bengalensis in nearby areas (5460.35km2) including Cheonan City, and the same data were used for analysis to compare those models. According to the HSI analysis, Prionailurus bengalensis's habitat probability was 74.65% for less than 0.5 and 25.34% for more than 0.5 and the top 30% were forest (99.07%). MaxEnt's analysis showed that 56.22% of those below 0.5 and 43.79% of those above 0.5 were found to have a high explanatory power of 78.3% of AUC. The Paired Wilcoxn test, which evaluated the significance of thoes models, confirmed that the mean difference between the two models was statistically significant (p<0.05). Analysis of the differences in the results of those models using the matrix table shows that score 24.43% HSI and MaxEnt was accordance,12.44% of the 0.0 to 0.2 section, 7.22% of the 0.2 to 0.4 section, 2.73% of the 0.4 to 0.6 section, 1.96% of the 0.6 to 0.8, and 0.08% of the 0.9 to 1.0. To verify where the score difference appears, the result values of those models were reset to values from 1 to 5 and overlaid. Overlapping analysis resulted in 30.26% of the Strongly agree values, 56.77% of the agree values, and 11.92% of the Disagree values. The places where the difference in scores occurs were analyzed in the order of forest (45.23%), agricultural land (34.57%), and urbanization area (7.65%). This confirmed that the analysis of the same target species within the same target site also has differences in forecasts depending on the modelling method. Therefore, a novel analysis method combining the advantages of each modeling in habitat prediction studies should be developed, and future study may be used to select Prionailurus bengalensis and species-protected areas and species protection areas in the future. Further research is judged to require higher accuracy studies through the use of various modeling techniques and on-site verification.
The problem of the population number of honeybees that is decreasing not only domestically but also globally, has a great influence on human beings and the entire ecosystem. The habitat of honeybees is recognized to be superior in urban environment rather than rural environment, and predicting for habitat assessment and conservation is necessary. Based on this, we targeted Cheonan City and neighboring administrative areas where the distribution of agricultural areas, urban areas, and forest areas is displayed equally. In order to predict the habitat preferred by honeybees, we apply the Maxent model what based on the presence information of the species. We also selected 10 environmental variables expected to influence honeybees habitat environment through literature survey. As a result of constructing the species distribution model using the Maxent model, 71.7% of the training data were shown on the AUC(Area Under Cover) basis, and it was be confirmed with an area of 20.73% in the whole target area, based on the 50% probability of presence of honeybees. It was confirmed that the contribution of the variable has influence on land covering, distance from the forest, altitude, aspect. Based on this, the possibility of honeybee's habitat characteristics were confirmed to be higher in wetland environment, in agricultural land, close to forest and lower elevation, southeast and west. The prediction of these habitat environments has significance as a lead research that presents the habitat of honeybees with high conservation value of ecosystems in terms of urban space, and it will be useful for future urban park planning and conservation area selection.
Proceedings of the National Institute of Ecology of the Republic of Korea
/
제2권1호
/
pp.1-14
/
2021
The study has been carried out with an objective to prepare Siberian roe deer habitat potential maps in South Korea based on three geographic information system-based models including frequency ratio (FR) as a bivariate statistical approach as well as convolutional neural network (CNN) and long short-term memory (LSTM) as machine learning algorithms. According to field observations, 741 locations were reported as roe deer's habitat preferences. The dataset were divided with a proportion of 70:30 for constructing models and validation purposes. Through FR model, a total of 10 influential factors were opted for the modelling process, namely altitude, valley depth, slope height, topographic position index (TPI), topographic wetness index (TWI), normalized difference water index, drainage density, road density, radar intensity, and morphological feature. The results of variable importance analysis determined that TPI, TWI, altitude and valley depth have higher impact on predicting. Furthermore, the area under the receiver operating characteristic (ROC) curve was applied to assess the prediction accuracies of three models. The results showed that all the models almost have similar performances, but LSTM model had relatively higher prediction ability in comparison to FR and CNN models with the accuracy of 76% and 73% during the training and validation process. The obtained map of LSTM model was categorized into five classes of potentiality including very low, low, moderate, high and very high with proportions of 19.70%, 19.81%, 19.31%, 19.86%, and 21.31%, respectively. The resultant potential maps may be valuable to monitor and preserve the Siberian roe deer habitats.
국내에 분포하는 진범아속의 식물종 개체군을 대상으로 GIS분석을 통해 서식환경을 분석 검증함으로써 이를 통해 환경변화에 취약한 고산식물종의 보전과 관리를 위한 새로운 방안을 모색하고자 본 연구를 수행하였다. 표본조사와 문헌조사를 바탕으로 작성된 진범아속의 분포도를 중심으로 현장조사에서 정확한 분포좌표와 서식환경 등의 지리적 및 생물학적 인자를 조사하여 이를 바탕으로 수치지형도를 이용하여 서식지 모형을 만들어냈다. 진범아속의 식물개체군은 해발고도 $470{\sim}1320m$ 구간이며 북향의 $15.5{\sim}36^{\circ}$ 사이의 경사지역으로 수계에서 가까운 활엽수림에 주로 분포하였다. 이를 바탕으로 GIS 프로그램을 사용하여 서울인근의 양수와 목동 두 개의 도엽에서 고도 향 경사 등의 요소의 중첩과 수계와의 거리, 토지피복분류에 따른 주변 식생 등을 조합하여 적합서식지를 확인하였고 현장 검증에서 이 적합서식지에 실제 진범아속 식물의 분포를 검증하였다. 이를 통하여 보전을 요하는 식물군의 미확인 서식지의 추측이나 대체서식지의 선정과정에 있어 GIS가 획기적으로 사용될 수 있음을 확인하였다.
Background: We developed a habitat suitability index (HSI) model for Pedicularis hallaisanensis, a Grade II Endangered Species in South Korea. To determine the habitat variables, we conducted a literature review on P. hallaisanensis with a specific focus on the associated spatial factors, climate, topography, threats, and soil factors to derive five environmental factors that influence P. hallaisanensis habitats. The specific variables were defined based on the collected data and consultations with experts in the field, with the validity of each variable tested through field studies. Results: Mt. Seorak had a suitable habitat area of 2.48 km2 for sites with a score of 1 (0.62% of total area) and 0.01 km2 for sites with a score of 0.9. Mt. Bangtae had a suitable habitat area of 0.03 km2 for sites with a score of 1 (0.02% of total area) and 0 km2 for sites with a score of 0.9. Mt. Gaya showed 0.13 km2 of suitable habitat for sites with a score of 1 (0.17% of total area) and 0 km2 for sites with a score of 0.9. Lastly, Mt. Halla showed 3.12 km2 of suitable habitat related to sites with a score of 1 (2.04% of total area) and 4.08 km2 of sites with a score of 0.9 (2.66% of total area). Mt. Halla accounts for 73.1% of the total core habitat area. Considering the climatic, soil, and forest conditions together with standardized collection sites, our results indicate that Mt. Halla should be viewed as a core habitat of P. hallaisanensis. Conclusions: The findings in this study provide useful data for the identification of core habitat areas and potential alternative habitats to prevent the extinction of the endangered species, P. hallaisanensis. Furthermore, the developed HSI model allows for the prediction of suitable habitats based on the ecological niche of a given species to identify its unique distribution and causal factors.
Sediment transport around artificial habitat which is induced by the change ol flow due to installation of the structure plays a role not only as a defect function of subsidence and burial but also bottom-environment control function. This study examined the characteristics of local scouring and deposition with sediment sizes, current velocities and installation direction of artificial habitat in flow field. Resultant subsidence and burial processes are investigated and discussed with Reynolds number. Together with sediment number and dimensionless time elapse, prediction formulas are established by combining these relationships. Bottom control function as cultivating effects is discussed with installation direction, and applicability of countermeasures is compared and stone pavement method is recommended.
본 연구는 한국 특산식물이고, IUCN Red List의 EN(위기종) 등급에 속하는 개느삼을 대상으로 자생지 분포, 자생지 분포 예측을 하기 위해 수행되었다. 개느삼의 자생지 분포 조사 결과,강원도 양구군 13곳, 인제군 3곳, 춘천시 2곳, 홍천군 1곳 총 19곳에 분포하는 것을 확인하였다. 우리나라에서 가장 북쪽 자생지는 양구군 임당리, 동쪽 인제군 한계리, 서쪽 춘천시 지내리, 남쪽 홍천군 성동리로 각각 확인되었다. 개느삼 자생지의 해발고도는 169-711m에 분포하는 것으로 나타났고, 평균 해발고도는 375m로 조사되었다. 개느삼 자생지의 면적은 8,000-734,000m2인 것으로 분석되었고, 평균 202,789m2로 조사되었다. 대부분의 개느삼 자생지는 간벌, 가지치기 등과 같은 숲가꾸기가 이루어진 곳으로 조사되었다. 개느삼 잠재 분포지 분석을 MaxEnt 프로그램을 이용하여 수행한 결과, AUC값은 0.9762로 분석되었다. 분포예측 자생지는 강원도 양구군, 인제군, 춘천시, 화천군 지역에 집중되어 분포하는 것으로 나타났다. 자생지 분포예측에 가장 영향을 많이 미치는 변수는 연간강수량, 토양탄소함유량, 최한월 기온으로 분석되었다. 본 연구 결과를 토대로 개느삼은 광량이 풍부하고 능선부에 주로 서식하는 것을 확인하였고, 향후 본 연구결과의 자생지 정보를 토대로 개느삼 자생지를 보전하기 위한 보호지역 지정 등을 위한 기초자료로 활용될 수 있을 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.