• Title/Summary/Keyword: Haar-like feature

Search Result 105, Processing Time 0.024 seconds

An Efficient Face Detection Method using Skin Color Information and Parallel Processing in Multi-Core SoC (멀티코어 SoC에서 피부색상 정보와 병렬처리를 이용한 효율적인 얼굴 검출 방법)

  • Kim, Hong-Hee;Lee, Jae-Heung
    • Journal of IKEEE
    • /
    • v.16 no.4
    • /
    • pp.375-381
    • /
    • 2012
  • In this paper, we present an implementation of Viola-Jones algorithm in a multi-core SoC by using skin color information and a parallel processing method. In order to reduce unnecessary operations and improve the detection speed, we adopted a face detection algorithm based on skin color and deleted background image. The algorithm is functionally divided into several parts taking account of the size and the dependency so that the divided functions can be proceeded in parallel. Experiment results in SoC with built-in Cortex-A9 multi core show that it is about 1.8 times faster than the existing algorithm which is not divided.

Multi-view Human Recognition based on Face and Gait Features Detection

  • Nguyen, Anh Viet;Yu, He Xiao;Shin, Jae-Ho;Park, Sang-Yun;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.12
    • /
    • pp.1676-1687
    • /
    • 2008
  • In this paper, we proposed a new multi-view human recognition method based on face and gait features detection algorithm. For getting the position of moving object, we used the different of two consecutive frames. And then, base on the extracted object, the first important characteristic, walking direction, will be determined by using the contour of head and shoulder region. If this individual appears in camera with frontal direction, we will use the face features for recognition. The face detection technique is based on the combination of skin color and Haar-like feature whereas eigen-images and PCA are used in the recognition stage. In the other case, if the walking direction is frontal view, gait features will be used. To evaluate the effect of this proposed and compare with another method, we also present some simulation results which are performed in indoor and outdoor environment. Experimental result shows that the proposed algorithm has better recognition efficiency than the conventional sing]e view recognition method.

  • PDF

A Fast and Accurate Face Detection and Tracking Method by using Depth Information (깊이정보를 이용한 고속 고정밀 얼굴검출 및 추적 방법)

  • Bae, Yun-Jin;Choi, Hyun-Jun;Seo, Young-Ho;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7A
    • /
    • pp.586-599
    • /
    • 2012
  • This paper proposes a fast face detection and tracking method which uses depth images as well as RGB images. It consists of the face detection procedure and the face tracking procedure. The face detection method basically uses an existing method, Adaboost, but it reduces the size of the search area by using the depth image. The proposed face tracking method uses a template matching technique and incorporates an early-termination scheme to reduce the execution time further. The results from implementing and experimenting the proposed methods showed that the proposed face detection method takes only about 39% of the execution time of the existing method. The proposed tracking method takes only 2.48ms per frame with $640{\times}480$ resolution. For the exactness, the proposed detection method showed a little lower in detection ratio but in the error ratio, which is for the cases when a detected one as a face is not really a face, the proposed method showed only about 38% of that of the previous method. The proposed face tracking method turned out to have a trade-off relationship between the execution time and the exactness. In all the cases except a special one, the tracking error ratio is as low as about 1%. Therefore, we expect the proposed face detection and tracking methods can be used individually or in combined for many applications that need fast execution and exact detection or tracking.

Vehicle Headlight and Taillight Recognition in Nighttime using Low-Exposure Camera and Wavelet-based Random Forest (저노출 카메라와 웨이블릿 기반 랜덤 포레스트를 이용한 야간 자동차 전조등 및 후미등 인식)

  • Heo, Duyoung;Kim, Sang Jun;Kwak, Choong Sub;Nam, Jae-Yeal;Ko, Byoung Chul
    • Journal of Broadcast Engineering
    • /
    • v.22 no.3
    • /
    • pp.282-294
    • /
    • 2017
  • In this paper, we propose a novel intelligent headlight control (IHC) system which is durable to various road lights and camera movement caused by vehicle driving. For detecting candidate light blobs, the region of interest (ROI) is decided as front ROI (FROI) and back ROI (BROI) by considering the camera geometry based on perspective range estimation model. Then, light blobs such as headlights, taillights of vehicles, reflection light as well as the surrounding road lighting are segmented using two different adaptive thresholding. From the number of segmented blobs, taillights are first detected using the redness checking and random forest classifier based on Haar-like feature. For the headlight and taillight classification, we use the random forest instead of popular support vector machine or convolutional neural networks for supporting fast learning and testing in real-life applications. Pairing is performed by using the predefined geometric rules, such as vertical coordinate similarity and association check between blobs. The proposed algorithm was successfully applied to various driving sequences in night-time, and the results show that the performance of the proposed algorithms is better than that of recent related works.

Real-Time Vehicle License Plate Recognition System Using Adaptive Heuristic Segmentation Algorithm (적응 휴리스틱 분할 알고리즘을 이용한 실시간 차량 번호판 인식 시스템)

  • Jin, Moon Yong;Park, Jong Bin;Lee, Dong Suk;Park, Dong Sun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.9
    • /
    • pp.361-368
    • /
    • 2014
  • The LPR(License plate recognition) system has been developed to efficient control for complex traffic environment and currently be used in many places. However, because of light, noise, background changes, environmental changes, damaged plate, it only works limited environment, so it is difficult to use in real-time. This paper presents a heuristic segmentation algorithm for robust to noise and illumination changes and introduce a real-time license plate recognition system using it. In first step, We detect the plate utilized Haar-like feature and Adaboost. This method is possible to rapid detection used integral image and cascade structure. Second step, we determine the type of license plate with adaptive histogram equalization, bilateral filtering for denoise and segment accurate character based on adaptive threshold, pixel projection and associated with the prior knowledge. The last step is character recognition that used histogram of oriented gradients (HOG) and multi-layer perceptron(MLP) for number recognition and support vector machine(SVM) for number and Korean character classifier respectively. The experimental results show license plate detection rate of 94.29%, license plate false alarm rate of 2.94%. In character segmentation method, character hit rate is 97.23% and character false alarm rate is 1.37%. And in character recognition, the average character recognition rate is 98.38%. Total average running time in our proposed method is 140ms. It is possible to be real-time system with efficiency and robustness.

Design and Implementation of Eye-Gaze Estimation Algorithm based on Extraction of Eye Contour and Pupil Region (눈 윤곽선과 눈동자 영역 추출 기반 시선 추정 알고리즘의 설계 및 구현)

  • Yum, Hyosub;Hong, Min;Choi, Yoo-Joo
    • The Journal of Korean Association of Computer Education
    • /
    • v.17 no.2
    • /
    • pp.107-113
    • /
    • 2014
  • In this study, we design and implement an eye-gaze estimation system based on the extraction of eye contour and pupil region. In order to effectively extract the contour of the eye and region of pupil, the face candidate regions were extracted first. For the detection of face, YCbCr value range for normal Asian face color was defined by the pre-study of the Asian face images. The biggest skin color region was defined as a face candidate region and the eye regions were extracted by applying the contour and color feature analysis method to the upper 50% region of the face candidate region. The detected eye region was divided into three segments and the pupil pixels in each pupil segment were counted. The eye-gaze was determined into one of three directions, that is, left, center, and right, by the number of pupil pixels in three segments. In the experiments using 5,616 images of 20 test subjects, the eye-gaze was estimated with about 91 percent accuracy.

  • PDF

A Method to Improve the Performance of Adaboost Algorithm by Using Mixed Weak Classifier (혼합 약한 분류기를 이용한 AdaBoost 알고리즘의 성능 개선 방법)

  • Kim, Jeong-Hyun;Teng, Zhu;Kim, Jin-Young;Kang, Dong-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.457-464
    • /
    • 2009
  • The weak classifier of AdaBoost algorithm is a central classification element that uses a single criterion separating positive and negative learning candidates. Finding the best criterion to separate two feature distributions influences learning capacity of the algorithm. A common way to classify the distributions is to use the mean value of the features. However, positive and negative distributions of Haar-like feature as an image descriptor are hard to classify by a single threshold. The poor classification ability of the single threshold also increases the number of boosting operations, and finally results in a poor classifier. This paper proposes a weak classifier that uses multiple criterions by adding a probabilistic criterion of the positive candidate distribution with the conventional mean classifier: the positive distribution has low variation and the values are closer to the mean while the negative distribution has large variation and values are widely spread. The difference in the variance for the positive and negative distributions is used as an additional criterion. In the learning procedure, we use a new classifier that provides a better classifier between them by selective switching between the mean and standard deviation. We call this new type of combined classifier the "Mixed Weak Classifier". The proposed weak classifier is more robust than the mean classifier alone and decreases the number of boosting operations to be converged.

Improved Face Detection Algorithm Using Face Verification (얼굴 검증을 이용한 개선된 얼굴 검출)

  • Oh, Jeong-su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.10
    • /
    • pp.1334-1339
    • /
    • 2018
  • Viola & Jones's face detection algorithm is a typical face detection algorithm and shows excellent face detection performance. However, the Viola & Jones's algorithm in images including many faces generates undetected faces and wrong detected faces, such as false faces and duplicate detected faces, due to face diversity. This paper proposes an improved face detection algorithm using a face verification algorithm that eliminates the false detected faces generated from the Viola & Jones's algorithm. The proposed face verification algorithm verifies whether the detected face is valid by evaluating its size, its skin color in the designated area, its edges generated from eyes and mouth, and its duplicate detection. In the face verification experiment of 658 face images detected by the Viola & Jones's algorithm, the proposed face verification algorithm shows that all the face images created in the real person are verified.

Rotated Face Detection Using Polar Coordinate Transform and AdaBoost (극좌표계 변환과 AdaBoost를 이용한 회전 얼굴 검출)

  • Jang, Kyung-Shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.7
    • /
    • pp.896-902
    • /
    • 2021
  • Rotated face detection is required in many applications but still remains as a challenging task, due to the large variations of face appearances. In this paper, a polar coordinate transform that is not affected by rotation is proposed. In addition, a method for effectively detecting rotated faces using the transformed image has been proposed. The proposed polar coordinate transform maintains spatial information between facial components such as eyes, mouth, etc., since the positions of facial components are always maintained regardless of rotation angle, thereby eliminating rotation effects. Polar coordinate transformed images are trained using AdaBoost, which is used for frontal face detection, and rotated faces are detected. We validate the detected faces using LBP that trained the non-face images. Experiments on 3600 face images obtained by rotating images in the BioID database show a rotating face detection rate of 96.17%. Furthermore, we accurately detected rotated faces in images with a background containing multiple rotated faces.

A Design on Face Recognition System Based on pRBFNNs by Obtaining Real Time Image (실시간 이미지 획득을 통한 pRBFNNs 기반 얼굴인식 시스템 설계)

  • Oh, Sung-Kwun;Seok, Jin-Wook;Kim, Ki-Sang;Kim, Hyun-Ki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1150-1158
    • /
    • 2010
  • In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problem. First, in preprocessing part, we use a CCD camera to obtain a picture frame in real-time. By using histogram equalization method, we can partially enhance the distorted image influenced by natural as well as artificial illumination. We use an AdaBoost algorithm proposed by Viola and Jones, which is exploited for the detection of facial image area between face and non-facial image area. As the feature extraction algorithm, PCA method is used. In this study, the PCA method, which is a feature extraction algorithm, is used to carry out the dimension reduction of facial image area formed by high-dimensional information. Secondly, we use pRBFNNs to identify the ID by recognizing unique pattern of each person. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as three kinds of polynomials such as constant, linear, and quadratic. Coefficients of connection weight identified with back-propagation using gradient descent method. The output of pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of the Particle Swarm Optimization. The proposed pRBFNNs are applied to real-time face recognition system and then demonstrated from the viewpoint of output performance and recognition rate.