• 제목/요약/키워드: Haar-like

검색결과 148건 처리시간 0.03초

명암 가중치를 이용한 반복 수렴 공간 모멘트기반 눈동자의 시선 추적 (Tracking of eyes based on the iterated spatial moment using weighted gray level)

  • 최우성;이규원
    • 한국정보통신학회논문지
    • /
    • 제14권5호
    • /
    • pp.1240-1250
    • /
    • 2010
  • 본 논문에서는 명암 가중치를 적용한 반복 공간 모멘트를 이용하여 복잡한 배경에서 사용자의 눈을 정확히 추출하고 추적할 수 있는 눈 추적 시스템을 제안한다. CCD 카메라를 활용하여 촬영한 입력영상으로부터 눈 영역을 찾기 전에 관심영역을 최소화하기 위하여 Haar-like feature를 이용하여 얼굴영역을 검출한다. 그리고 주성분 분석의 고유 얼굴 기반인 고유 눈을 이용하여 눈 영역을 검출 한다. 또한 눈 영역에서 가장 어두운 부분으로부터 눈의 좌 우 상 하 끝점인 특징 점을 찾고, 명암 가중치를 적용한 반복 수렴 공간 모멘트를 이용하여 정확한 눈동자의 시선추적을 확인하였다.

Haar-like feature/HMM 을 이용한 얼굴 검출 및 인증 시스템 (Face Detection & Identification System Using Haar-like feature/HMM)

  • 민지홍;이원찬;홍기천
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (2)
    • /
    • pp.739-741
    • /
    • 2004
  • 얼굴인식 기술 분야에 있어서 Haar-like feature를 이용한 얼굴 검출 알고리즘은 많은 관련 알고리즘 중에 매우 빠른 트레이닝 시간과 처리속도 향상의 장점을 가지고 있다 그러므로 특히 동영상에서의 얼굴 검출에서 유용하게 쓰일 수 있다. 이러한 방법으로 검출된 얼괄 데이터는 HMM(Hidden Markov Model)알고리즘을 이용하여 이미 트레이닝된 얼굴 데이터베이스와의 비교를 통해 얼굴인식에 있어서 가장 확률이 높은 사람을 본인의 얼굴로 인증하는 신원 확인 시스템을 구현할 수 있게 된다. 신원 확인 시스템에 있어서 얼굴 검출 율이나 신원 확인 성공률은 모두 학습 과정에 의해 결정되기 때문에 얼마나 많은 학습을 효율적으로 하느냐에 따라 성능이 좌우된다. 이러한 시스템은 카메라에 얼굴을 보여주는 것만으로 신원 확인이 가능하기 때문에 번거로운 신원 확인 과정을 거쳐야 하는 다른 시스템 구조에 비해 매우 편리한 기능을 제공할 수 있다.

  • PDF

분리된 두 사각 특징 마스크를 이용한 Adaboost 기반의 얼굴 검출 (Adaboost Based Face Detection Using Two Separated Rectangle Feature Mask)

  • 홍용희;정환익;한영준;한헌수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1855_1856
    • /
    • 2009
  • 본 논문은 Haar-like 마스크와 유사한 특징을 갖지만 두 사각형 영역의 크기와 위치를 제한하지 않는 분리된 두 사각 특징 마스크를 이용한 Adaboost 기반 얼굴검출 알고리즘을 제안한다. 기존의 Haar-like 특징이 단순히 두 사각 영역의 화소값들의 차를 구함으로써 계산이 용이하나 인접한 두 사각 영역으로 한정함으로써 고품질 특징을 얻기 어렵다. 이런 Haar-like 특징마스크의 내재된 문제점을 개선하기 위해, 제안하는 특징 마스크는 다양한 크기와 분리된 두 사각 영역을 갖는 형태로 고품질의 특징을 얻는다. 고품질의 특징은 Adaboost 알고리즘의 약 분류기(weak classifier)의 성능을 학습단계부터 높여 전반적으로 얼굴 검출 알고리즘의 성능을 향상시킨다. 제안하는 분리된 두 사각 특징을 이용한 adaboost 기반 얼굴검출 기법의 우수성을 다양한 실험을 통해 검증하였다.

  • PDF

Haar-like-feature 알고리즘과 CAMShift 알고리즘 비교 분석 (Haar-like-feature algorithms and Comparative analysis algorithms CAMShift)

  • 홍근목;최승현;이근호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 추계학술발표대회
    • /
    • pp.735-736
    • /
    • 2015
  • 최근 잇따른 보안사고의 발생주기가 짧아지고 그 피해는 점점 심각해져만 가고 있다. 이에 맞춰 여러 대응방안이 나오고 있지만 새로운 취약점은 계속해서 발견되고 있다. 그에 대응하여 개인을 식별할 새로운 기술인 보안과 관련하여 영상처리기술이 사용되고 있으며 현재도 활발히 연구중에 있다. 본 논문은 현재 사용되는 얼굴인식 알고리즘인 Adaboost-CAMShift 그리고 Adaboost-Haar-like Feature의 기술들을 비교 분석 하고 소개하는 것을 목표로 한다.

Haar-like Feature와 Connected Component Labeling을 이용한 혀 영역 검출 (Tongue detection using Haar-like Feature and Connected Component Labeling)

  • 이민택;오민석;임영훈;이규원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 춘계학술발표대회
    • /
    • pp.861-864
    • /
    • 2014
  • 본 논문은 혀 미각 영역별 분석을 통해 신체의 이상 여부에 대한 정보를 제공하는 설진 진단 시스템의 첫 단계로 얼굴 영상에서 혀 영역을 검출하는 실험을 통하여 미각 영역별 분석의 기반을 다진다. 제안하는 알고리즘은 혀 영상을 획득한 후, Haar-like Feature를 이용하여 혀를 검출한다. 검출된 혀 영역은 HSV컬러모델의 특징을 이용하여 이진화 한 후, Connected Component Labeling을 이용하여 혀 영역 분리한다. 한방병원의 환자들의 혀 사진 100장을 이용하여 90%의 검출률을 확인하였다.

Application of Multi-Class AdaBoost Algorithm to Terrain Classification of Satellite Images

  • Nguyen, Ngoc-Hoa;Woo, Dong-Min
    • 전기전자학회논문지
    • /
    • 제18권4호
    • /
    • pp.536-543
    • /
    • 2014
  • Terrain classification is still a challenging issue in image processing, especially with high resolution satellite images. The well-known obstacles include low accuracy in the detection of targets, especially for the case of man-made structures, such as buildings and roads. In this paper, we present an efficient approach to classify and detect building footprints, foliage, grass and road from high resolution grayscale satellite images. Our contribution is to build a strong classifier using AdaBoost based on a combination of co-occurrence and Haar-like features. We expect that the inclusion of Harr-like feature improves the classification performance of the man-made structures, since Haar-like feature is extracted from corner features and rectangle features. Also, the AdaBoost algorithm selects only critical features and generates an extremely efficient classifier. Experimental result indicates that the classification accuracy of AdaBoost classifier is much higher than that of the conventional classifier using back propagation algorithm. Also, the inclusion of Harr-like feature significantly improves the classification accuracy. The accuracy of the proposed method is 98.4% for the target detection and 92.8% for the classification on high resolution satellite images.

기계학습 기반의 신호등 검출과 형태적 정보를 이용한 인식 알고리즘 (Machine Learning based Traffic Light Detection and Recognition Algorithm using Shape Information)

  • 김정환;김선규;이태민;임용진;임준홍
    • 전기전자학회논문지
    • /
    • 제22권1호
    • /
    • pp.46-52
    • /
    • 2018
  • 최근 자율 주행에 관한 다양한 연구가 진행되는 가운데 신호등 검출 및 신호 인식 알고리즘은 가장 중요한 요소 중의 하나이다. 기존에 알고리즘의 대부분은 색상을 기반으로 검출하고 인식한다. 이러한 방법은 영상의 각도, 거리, 주변 조도 환경 등에 의해 영향을 받아 신호등의 색상이 변화하여 인식률이 낮아진다는 단점이 있다. 본 논문에서는 이러한 문제점을 해결하기 위해서 Haar-like feature 및 SVM(Support Vector Machine) 기반의 신호등 검출과 제원 정보를 이용한 인식 알고리즘을 제안한다. 신호등 검출의 정확성을 향상시키기 위해서 Haar-like feature 이후에 SVM으로 검증한다. Haar-like feature와 SVM는 사전에 지도학습을 시행한다. 검출 과정 후에는 영역 분할을 통해서 신호만을 추출하여 점등 여부를 파악하고 최종적으로 인식하는 과정을 거친다. 제안한 알고리즘은 기존의 알고리즘과 달리 신호등의 형태학적 특성을 기반으로 검출하고 인식하므로 주변 환경으로부터의 영향에 강인하다는 장점이 있다. 블랙박스 영상으로 실험한 결과 기존의 색상 기반 알고리즘보다 신호의 인식률이 높았다.

파티클 필터를 장착한 가중된 다중 인스턴스학습을 이용한 전방차량 추적 (Forward Vehicle Tracking Based on Weighted Multiple Instance Learning Equipped with Particle Filter)

  • 박근호;이준환
    • 한국지능시스템학회논문지
    • /
    • 제25권4호
    • /
    • pp.377-385
    • /
    • 2015
  • 본 논문에서는 파티클 필터를 장착하고 WMIL(Weighted Multiple Instance Learning)을 이용한 전방차량 추적 알고리즘을 제안하였다. 제안된 알고리즘에서 영상표현은 Haar-like 특징들을 사용하고 차량인식 결과는 추적하고자 하는 전방차량의 위치를 알아내는데 사용된다. 제안된 방식에서 WMIL과 파티클 필터를 결합하기 위해 기존의 외관모델을 이용한 추적에서 탐색영역에서 영상조각의 추적객체 신뢰도 맵을 계산하는 대신에 파티클 필터의 전파, 관측, 추정, 선택 그리고 분류기 훈련 등의 단계를 매 프래임 마다 순차적으로 수행하여 객체의 새로운 위치를 갱신하였다. 제안된 전방차량 추적방식은 실험을 통해 Ada-boost, MIL(Multiple Instance Learning)이나 WMIL 방법을 이용하는 추적에 비해 파티클 필터로 인해 계산량 증가는 불가피하나 추적의 질적인 정확도는 국도, 고속도로, 터널 및 시내도로 등의 실험 동영상에서 추적대상의 위치오차가 평균 4.5화소 정도로 기존의 추적방법들에 비해 크게 개선되는 것을 확인하였다.

새로운 Free Rectangle 특징을 사용한 Adaboost 기반 얼굴검출 방법 (A Face Detection Method Based on Adaboost Algorithm using New Free Rectangle Feature)

  • 홍용희;한영준;한헌수
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권2호
    • /
    • pp.55-64
    • /
    • 2010
  • 본 논문은 수행시간이 빠르면서 효율성이 높은 새로운 Free Rectangle 특징을 사용한 Adaboost 알고리즘 기반 얼굴 검출 방법을 제안한다. 제안하는 Free Rectangle 특징은 동일한 면적의 분리가 가능한 두 개의 사각형으로 구성된 마스크로부터 정의된다. Haar-like 특징은 다양성을 높이기 위해 일반적으로 두 개 이상의 사각 영역으로 구성한 복잡한 마스크 구조를 갖는다. 하지만, 제안하는 특징 마스크는 두 사각형이 특징 윈도우 안에 놓이는 위치와 크기에 따라 효율성이 좋은 다양한 특징을 얻을 수 있다. 또한 제안하는 특징은 일반 Haar-like 특징과 달리 마스크 형태에 상관없이 두 사각 영역의 화소 합의 차만 계산함으로 수행 시간을 크게 줄일 수 있다. 실세계 영상에서 제안하는 Adaboost 알고리즘 기반 얼굴 검출 기법은 빠른 검출 속도와 높은 검출 결과를 보여 학습 데이터만을 바꿔 다른 물체 검출에도 쉽게 적용이 가능하다.

판별 함수를 이용한 문턱치 선정에 의한 약분류기 개선 (Improving Weak Classifiers by Using Discriminant Function in Selecting Threshold Values)

  • 샴 아디카리;유현중;김형석
    • 한국콘텐츠학회논문지
    • /
    • 제10권12호
    • /
    • pp.84-90
    • /
    • 2010
  • Viola와 Jones가 사용한 Haar-like 특징 기반 약분류기의 분별력을 개선하기 위하여, 2차 판별식에 기반한 판정 경계(decision boundary) 결정 방법을 제안한다. Viola와 Jones가 부스팅된 약분류기 앙상블을 사용해서 강분류기를 만들 때 사용한 단일 판정 경계 기반 약분류기는 특징 공간을 지나치게 단순하게 해석한 산물이어서 대부분의 경우 최적이 아니며, 객체 클래스와 배경 클래스 간을 효율적으로 분별하기에 흔히 너무 약하다. 이 논문에서 제안하는 2차 판별식 분석에 기반한 방법은 객체 클래스와 배경 클래스 사이에 다중 판정 경계를 사용하는 약분류기를 만들어준다. 1000개의 positive 샘플과 3000개의 negative 샘플을 훈련에 사용하고, 500개의 positive와 500개의 negative를 테스트에 사용한 차량 검출 실험을 통해서, 기존의 단일 문턱치 기반 약분류기 방식에 비해, 제안 기법이 더 적은 수의 분류기를 사용하면서도 더 우수한 분류 성능을 제공하는 것을 확인하였다.