• Title/Summary/Keyword: Haar-Like

Search Result 148, Processing Time 0.035 seconds

A Real-time Eye Tracking Algorithm for Autostereoscopic 3-Dimensional Monitor (무안경식 3차원 모니터용 실시간 눈 추적 알고리즘)

  • Lim, Young-Shin;Kim, Joon-Seek;Joo, Hyo-Nam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.8
    • /
    • pp.839-844
    • /
    • 2009
  • In this paper, a real-time eye tracking method using fast face detection is proposed. Most of the current eye tracking systems have operational limitations due to sensors, complicated backgrounds, and uneven lighting condition. It also suffers from slow response time which is not proper for a real-time application. The tracking performance is low under complicated background and uneven lighting condition. The proposed algorithm detects face region from acquired image using elliptic Hough transform followed by eye detection within the detected face region using Haar-like features. In order to reduce the computation time in tracking eyes, the algorithm predicts next frame search region from the information obtained in the current frame. Experiments through simulation show good performance of the proposed method under various environments.

Face Detection for Medical Service Robot (의료서비스로봇을 위한 얼굴추출 방법)

  • Park, Se-Hyun;Ryu, Jeong-Tak
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.3
    • /
    • pp.1-10
    • /
    • 2011
  • In this paper, we propose a face detection method for medical service robot. The proposed method is robust in complex background and light. Our method is performed by three steps. Firstly the background is eliminated using mean shift algorithm. Thereafter, based on color space, face is extracted. Finally the object is extracted using Haar-like feature method. To assess the effectiveness of the proposed system, it was tested and experimental results show that the proposed method is applicable for medical service robot.

Harris Corner Detection for Eyes Detection in Facial Images

  • Navastara, Dini Adni;Koo, Kyung-Mo;Park, Hyun-Jun;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.373-376
    • /
    • 2013
  • Nowadays, eyes detection is required and considered as the most important step in several applications, such as eye tracking, face identification and recognition, facial expression analysis and iris detection. This paper presents the eyes detection in facial images using Harris corner detection. Firstly, Haar-like features for face detection is used to detect a face region in an image. To separate the region of the eyes from a whole face region, the projection function is applied in this paper. At the last step, Harris corner detection is used to detect the eyes location. In experimental results, the eyes location on both grayscale and color facial images were detected accurately and effectively.

  • PDF

Face Alignment using Template Warping BAM (템플릿 워핑 BAM을 이용한 얼굴 윤곽선 검출)

  • Kim, Seok-Ho;Kim, Jae-Min;Cho, Seoung-Won;Lee, Ki-Sung;Chung, Sun-Tae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.418-420
    • /
    • 2008
  • 얼굴 윤곽선 검출을 위해 그동안 많은 알고리즘이 연구되었다. 그리고 최근에 기존 Active Appearance Model(AAM)에 비해 성능이 개선된 Boosted Appearance Model (BAM)가 Liu에 의해제안되었다. BAM에서는 매 반복 단계마다 Steepest Descent 영상을 구해야 하는데 입력영상의 워핑을 해야 하므로 이것은 계산량이 많다. 본 논문은 BAM을 사용하면서 매번 계산되어야 하는 입력 영상의 워핑을 대신해 템플릿이 워핑함으로써 계산 시간을 줄일 수 있는 방법을 제시한다. 템플릿은 약한 분류기에 사용되는 Haar-like feature들로 이것은 입력 영상에 비해 크기가 매우 작으므로 제안된 방법을 사용하면 Steepest Descent 영상을 구하는데 필요한 워핑 속도를 줄일 수 있다.

  • PDF

A novel visual tracking system with adaptive incremental extreme learning machine

  • Wang, Zhihui;Yoon, Sook;Park, Dong Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.451-465
    • /
    • 2017
  • This paper presents a novel discriminative visual tracking algorithm with an adaptive incremental extreme learning machine. The parameters for an adaptive incremental extreme learning machine are initialized at the first frame with a target that is manually assigned. At each frame, the training samples are collected and random Haar-like features are extracted. The proposed tracker updates the overall output weights for each frame, and the updated tracker is used to estimate the new location of the target in the next frame. The adaptive learning rate for the update of the overall output weights is estimated by using the confidence of the predicted target location at the current frame. Our experimental results indicate that the proposed tracker can manage various difficulties and can achieve better performance than other state-of-the-art trackers.

Implementation of Realtime Face Recognition System using Haar-Like Features and PCA in Mobile Environment (모바일 환경에서 Haar-Like Features와 PCA를 이용한 실시간 얼굴 인증 시스템)

  • Kim, Jung Chul;Heo, Bum Geun;Shin, Na Ra;Hong, Ki Cheon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.2
    • /
    • pp.199-207
    • /
    • 2010
  • Recently, large amount of information in IDS(Intrusion Detection System) can be un manageable and also be mixed with false prediction error. In this paper, we propose a data mining methodology for IDS, which contains uncertainty based on training process and post-processing analysis additionally. Our system is trained to classify the existing attack for misuse detection, to detect the new attack pattern for anomaly detection, and to define border patter between attack and normal pattern. In experimental results show that our approach improve the performance against existing attacks and new attacks, from 0.62 to 0.84 about 35%.

Drowsiness-drive Perception System Using Vision (비젼을 이용한 졸음운전 감지 시스템)

  • Joo, Young-Hoon;Kim, Jin-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2281-2284
    • /
    • 2008
  • The purpose of this paper is to develope the drowsiness-drive perception system which judges drowsiness driving based on drivers' eye region using single vision system. To do this, first, we use the Haar-like feature and AdaBoost learning algorithm for detecting the features of the face region. And we measure the eye blinking frequency and eye closure duration from these feature data. And then, we propose the drowsiness-drive detection algorithm using the eye blinking frequency and eye closure duration. Finally, we have shown the effectiveness and feasibility of the proposed method through some experiments.

Design and Implementation of Face Direction Recognition System using Face Detection (얼굴 검출을 이용한 얼굴 방향 인식 시스템의 설계 및 구현)

  • Yum, Hyo Sub;Lee, Joo-Hyung;Hong, Min
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.583-585
    • /
    • 2012
  • 본 논문은 웹카메라를 이용하여 얼굴이 바라보고 있는 방향을 인식하는 시스템을 제안한다. 얼굴 검출 방법으로 Haar-like Face Detect를 이용하여 얼굴을 검출하고 전체 이미지에서 검출된 얼굴 영역만을 관심영역으로 설정하여 Haar-like Eye Detect를 이용하여 눈 영역을 검출하였다. 검출된 눈 위치에 대한 평균값으로 얼굴이 왼쪽 방향을 보고 있는지 오른쪽 방향을 보고 있는지를 판단하였다. 제안된 방법의 실험 결과, 얼굴 및 눈 영역을 비교적 정확하게 검출하였으며 계산된 눈 위치를 이용하여 얼굴 방향 인식에 대해서 우수한 성능을 보였다.

Vision-based Vehicle Detection and Inter-Vehicle Distance Estimation (영상 기반의 차량 검출 및 차간 거리 추정 방법)

  • Kim, Gi-Seok;Cho, Jae-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.3
    • /
    • pp.1-9
    • /
    • 2012
  • In this paper, we propose a vision-based robust vehicle detection and inter-vehicle distance estimation algorithm for driving assistance system. We use the haar-like features of car rear-shadows, as well as the edge features for detecting of vehicles. The use of additional vehicle edge features greatly reduces the false-positive errors in the vehicle detection. And, after analyzing the conventional two inter-vehicle distance estimation methods: the location-based and the vehicle width-based, an improved inter-vehicle distance estimation algorithm which has the advantage of both method is proposed. Several experimental results show the effectiveness of the proposed method.

Automatic segmentation of a tongue area and oriental medicine tongue diagnosis system using the learning of the area features (영역 특징 학습을 이용한 혀의 자동 영역 분리 및 한의학적 설진 시스템)

  • Lee, Min-taek;Lee, Kyu-won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.826-832
    • /
    • 2016
  • In this paper, we propose a tongue diagnosis system for determining the presence of specific taste crack area as a first step in the digital tongue diagnosis system that anyone can use easily without special equipment and expensive digital tongue diagnosis equipment. Training DB was developed by the Haar-like feature, Adaboost learning on the basis of 261 pictures which was collected in Oriental medicine. Tongue candidate regions were detected from the input image by the learning results and calculated the average value of the HUE component to separate only the tongue area in the detected candidate regions. A tongue area is separated through the Connected Component Labeling from the contour of tongue detected. The palate regions were divided by the relative width and height of the tongue regions separated. Image on the taste area is converted to gray image and binarized with each of the average brightness values. A crack in the presence or absence was determined via Connected Component Labeling with binary images.