• Title/Summary/Keyword: HVFAC

Search Result 11, Processing Time 0.028 seconds

Carbonation Characteristic of Self Compacting HVFAC with Silica Fume Content (실리카흄 사용량에 따른 고유동 HVFAC 탄산화 특성)

  • Park, Chan-Kyu;Kim, Han-Junn;Lee, Seung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.429-430
    • /
    • 2010
  • In this study, the carbonation characteristic of highly flowable HVFAC with silica fume content was reported. As results, it appeared that when the silica fume content was $10{\sim}20kg/m^3$, the fludity and dynamic stability were highly improved. And the carbonation coefficient increases exponentially with increasing silica fume content.

  • PDF

Resistance to Corrosion of Reinforcing Steel and Critical Chloride Content of High Volume Fly Ash Concrete (하이볼륨 플라이애시 콘크리트의 철근부식 저항성 및 임계 염화물량)

  • Lee, Hyun-Jin;Bae, Su-Ho;Jung, Sang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.375-381
    • /
    • 2017
  • Recently, due to the increasing of interest about the eco-friendly concrete, it is being increased to use concretes containing by-products of industry such as fly ash, ground granulated blast furnace slag, silica fume, and etc. Especially, these are well known for improving the resistance to reinforcement corrosion in concrete and decreasing chloride ion penetration. The purpose of this experimental research is to evaluate the resistance to corrosion of reinforcement and critical chloride content of high volume fly ash concrete(HVFAC) which is replaced with fly ash for approximately 50% cement content. For this purpose, corrosion monitoring of reinforcement by half cell potential method was carried out for the cylindrical test specimens that the upper of reinforcement in concrete was exposed to detect the time of corrosion initiation for reinforcement. It was observed from the test result that the the time of corrosion initiation for reinforcement of HVFAC by the accelerated corrosion tests increased 1.2~1.3 times than plain concrete and the critical chloride contents of plain concrete and HVFAC were found to range $0.80{\sim}1.20kg/m^3$, $0.89{\sim}1.60kg/m^3$, respectively.

Estimation of Drying Shrinkage of High Volume Fly-Ash concrete Using Early Strength Improvement Admixture (초기강도 향상 혼화재를 사용한 플라이애시 다량치환 콘크리트의 건조수축 해석)

  • Park, Chun-Jin;Son, Ho-Jeong;Back, Dae-Hyun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.63-65
    • /
    • 2010
  • The purpose of the study was to analyze dry shrinkage of HVFAC (high volume fly ash concrete) with admixture to improve early strength. The results were as follows. In dry shrinkage of HVFAC with admixture to improve early strength, F3 had the lowest amount of dry shrinkage. The next is in order of Plain, F3-f15 and F3-f15r5. The study used index function modelfor analysis on dry shrinkage. Coefficient of determination was more than 0.97 in all mix, which made it possible to have a good estimation.

  • PDF

An Evaluation of Basic Mechanical Performance for High Volume Fly Ash Concrete (다량 첨가된 플라이애시 콘크리트의 기초 역학적 성능 평가)

  • Yoo, Sung-Won;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.202-208
    • /
    • 2014
  • For evaluating basic structural behavior of HVFA (High Volume Fly Ash) concrete, several tests are performed considering different ratios of fly ash replacement and structural evaluation regarding compressive strength, elasticity modulus, stress-strain relationship, and bond strength is also performed. Test results show that elasticity modulus of HVFA concrete has close relationships with compressive strength and fly ash replacement ratio. The ultimate strain shows slight difference from domestic design code. On the other hand, there are no differences between general concrete and HVFA concrete for elasticity modulus and bond strength.

The Characteristic of Strength Development of High Volume Fly-Ash Concrete (플라이애쉬 치환율이 높은 콘크리트의 압축강도 발현 특성)

  • Park, Chan-Kyu;Lee, Seung-Hoon;Kim, Han-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.67-70
    • /
    • 2007
  • In this study, the characteristic of strength development of high volume fly ash concrete(HVFAC) was experimentally investigated. The production of one ton of portland cement releases about 0.87ton of CO2 into the atmosphere. HVFAC is an emerging material technology and is environmentally friendly because of its reduced use of portland cement, reduced CO2 emissions. For this purpose, two levels of W/B were selected. Seven levels of fly ash replacement ratios and two levels of silica fume replacement ratios were adopted. In the concrete mix, the water content of 125kg/m3 was used, which is less than that of usual water content. As a result, it was observed that the slump of concrete was increased with the increasing fly ash replacement ratio and when the silica fume was incorporated into the concrete, the slump was significantly decreased at the same condition. It appeared that the compressive strength gradually decreased with increasing fly ash replacement ratio at the early age, but the difference of strength up to replacement ratio of 50% was little at the age of 91 days because of the pozzolanic reaction of fly ash.

  • PDF

The Characteristics of Strength Development on Concrete with Low Heat Cement and High Volume Fly-Ash (저열 시멘트 HVFAC 강도 발현 특성)

  • Park, Chan-Kyu;Lee, Seung-Hoon;Kim, Han-Jun;Kim, Sang-Jun;Lee, Tae-Wang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.637-640
    • /
    • 2008
  • In this study, the characteristics of strength development on high volume fly ash concrete(HVFAC)with Type 4 cement was experimentally investigated. Three levels of W/B were selected. Four levels of fly ash replacement ratios and two levels of silica fume replacement ratios were adopted. In the concrete mix, the water content of 125kg/m$^3$ was used, which is less than that of usual water content. As a result, it appeared that the compressive strength gradually decreased with increasing fly ash replacement ratio until 91days. However, regarding the compressive strength, the proper replacement ratio is about 20%, which is low compared to Type I cement case. It was observed that the tensile strength is proportional to the 0.72 power of the compressive strength. It appears that the prediction equation presented in Concrete Standard Specification overestimate the tensile strength in the low strength range, underestimate the tensile strength in the hi호 strength range.

  • PDF

The Degree of Hydration and Mechanical Properties of High Volume Fly Ash Cement (하이볼륨 플라이애시 시멘트의 수화도 및 역학적 특성)

  • Cha, Soo-Won;Choi, Young-Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.95-102
    • /
    • 2022
  • Recently, there has been a growing interest in reducing greenhouse gases in all industrial fields. In the construction industry, studies have been conducted for the use of high-volume fly ash concrete to replace cement with fly ash. Quantitative measurements of cement hydration and fly ash reactivity enable a clear understanding of the strength development mechanism of high-volume fly ash concrete. It is very difficult to describe the reactivity in a simple way because the hydration and pozzolanic reactions of cement paste containing fly ash are very complex and the composition of the hydration product cannot be accurately determined. This study investigated the hydration and mechanical properties of high volume fly ash (HVFA) cement according to the substitution rate of fly ash (FA). The hydration degree of cement and the reactivity of FA were evaluated through the selective dissolution method and the non-evaporable water content of the paste according to age. In addition, compressive strength was measured using HVFA mortar specimens according to age. As a result of the experiment, as the substitution rate of fly ash increased, the hydration degree of cement increased, but the reactivity of FA decreased.

The Application of High Volume Fly-Ash Concrete on Construction Site (플라이애쉬 다량 치환 콘크리트 현장 적용)

  • Park, Chan-Kyu;Lee, Hoi-Keun;Lee, Seung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.271-272
    • /
    • 2009
  • In this study, the application results of high volume fly ash concrete(HVFAC) on the construction site were reported. The structures were the mat foundations of 3m and 2m thickness with design strength of 40MPa. The replacement ratio of fly ash was 50%, and the pre-mix type binder was used. As a result, it appeared that the temperature increases of concrete foundations were about $39^{\circ}$C for 3m thickness and $36^{\circ}$C for 2m thickness.

  • PDF

An Evaluation of Shear Strength of Plain HVFAC Concrete by Double Shear Test Method (2면전단시험법에 의한 무근 HVFAC 콘크리트의 전단강도 평가)

  • Lee, Hyung-Jib;Suh, Jeong-In;Yoo, Sung-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.261-266
    • /
    • 2017
  • In this study, to determine the shear properties, experiments on the shear behavior of plain concrete with the high volume fly ash cement by double shear test were performed. Test parameters are fly ash content and concrete compressive strength. Experimental results show the tendency that the shear strength similarly increases with an increase in the compressive strength as is generally known. The concrete shear strength formula proposed in the concrete structural design code of KCI shows a similar tendency to the experimental results, and It is expected that the shear strength of the high volume fly ash cement concrete can be applied with the formula given in the concrete structural design code of KCI. When considering the fly ash content ratio, the shear strength of high volume fly ash cement concrete according to fly ash conctent ratio shows as having a far greater correlation than if it is not considered to fly ash content ratio. So, even though existing code can be appliable for non consideration of the fly ash content ratio, we proposed a formula that is much more relevant than that of concrete structural design code of KCI.

Flexural Behavior of RC Beam Using High Volume Fly-Ash Cement (다량치환된 플라이애시 시멘트를 사용한 철근콘크리트 보의 휨거동)

  • Ahn, Young-Sun;Cha, Yeong-Dal
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.128-136
    • /
    • 2014
  • It is known that the best way to recycle fly ash is to use in concrete. It is impossible to bury in the ground this fly ash recently, so it is trying to use high volume fly ash concrete. Nevertheless, recent main research topics are focused in the part of material only. However, it is necessary to perform the researches about elasticity modulus, stress-strain relationship and structural behavior. Therefore, in this paper, 18 test members were manufactured with 3 test variables, namely fly ash replacement ratio 0, 35, 50%, concrete compressive strength 20, 40, 60MPa and 2 tensile steel ratio. 18 test members were tested for flexural behavior. From the test results, there were no differences between 35, 50% high volume fly ash cement concrete and ordinary concrete without fly ash (FA=0%). In order to evaluate the HVFAC flexural behavior, Analytical model was proposed and the computer program was developed. There were no differences between test results and analysis results. So, the proposed analytical model was reasonable.