• 제목/요약/키워드: HVAC Noise

검색결과 72건 처리시간 0.027초

선박용 통합 HVAC 소음해석 프로그램 개발 (Development of Integrated HVAC Noise Analysis Program for Ships)

  • 한주범;홍석윤;송지훈;김노성;천승현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.588-593
    • /
    • 2011
  • The Main design parameters of ship HVAC systems are pressure drop and noise analysis of ducts. The Noise prediction for HVAC(Heating, Ventilating and Air Conditioning) systems are normally performed by empirical method suggested by NEBB(National Environmental Balancing Bureau, 1994), but NEBB's method is not suitable for the ship HVAC systems. In this paper, numerical analysis methods are used to develop a noise prediction method for the ship HVAC systems, especially for large ducts. To develop regression formula of attenuation of sound pressure level in large duct, Boundary Element Method(BEM) is used. Using dynamic loss coefficient which is suggested by ASHRAE fitting data base and numerical methods of HVAC noise analysis, integrated HVAC noise analysis of Program is developed. The developed program can present pressure drop and noise analysis of the ship HVAC systems. To verify the accuracy and convenience of the developed program, prediction of HVAC system for Semi-Submersible Drilling RIG is carried out and the results are compared with measurement of noise level during sea trial.

  • PDF

GUI Modeling을 기반으로한 선박의 HVAC System 소음 해석 (The Noise Analysis of Ship HVAC System Based on GUI Modeling)

  • 이철원;김노성;최수현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1300-1305
    • /
    • 2001
  • One of the main noise sources in cabin onboard ships is HVAC system. Up to now, the HVAC system designer manually calculates the HVAC system noise, or uses the program that is generally based on text user interface. In such a case, it is difficult to use the program and also to obtain the flow induced noise. In this study, the HVAC noise analysis program has been developed, which is based on GUI user interface that include 3.D modelling and model modification modules. For calculation of the insertion loss of HVAC system elements, NEBB experimental data and plane wave theory are used. And in order to obtain the flow rate information in each HVAC elements which is used to calculate the flow induced noise calculation, Global Converging Newton-Rapson Method is used.

  • PDF

공조시스템 유기 격실 소음 예측 프로그램 개발 (Development of Cabin Noise Prediction Program Induced by HVAC System)

  • 김병희;권종현;조대승
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.554-558
    • /
    • 2004
  • In this paper, we introduce noise prediction program of HVAC system to assist low-noisy design of ship's cabin. The developed program calculates sound power levels at HVAC components considering primary and secondary noise generated by fan and duct element, duct element noise attenuation, and duct break-in noise based on the authentic empirical method suggested by NEBB and acoustic power balancing method. Sound pressure level at cabin with or without ceiling system is evaluated by the diffuse-field theory considering diffuser and duct break-out sound powers. Moreover, the program provides intuitive pre- and post-processors using modem GUI functions to help efficient modeling and evaluation of cabin and HVAC component noise. To validate the accuracy and convenience of the program, noise prediction for a HVAC system is demonstrated.

  • PDF

한국형 고속전철 공조시스템 소음에 관한 연구 (Noise Characteristics of the HVAC System of Korea High Speed Train)

  • 하인수;박철희;이우식;한기흥
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 추계학술대회 논문집
    • /
    • pp.379-387
    • /
    • 1998
  • HVAC systems are used to maintain comfort conditions in occupied spaces. Like rolling noise and aerodynamic noise, noise from the HVAC system of train increases interior noise level. For an appropriate interior noise level, it is necessary not to find noise sources and their propagation paths. Noise emission from the sources and propagation through the propagation paths should be regulated in order to reduce their effect to the interior noise level. In general, the main noise source in the HVAC system is blower which operates at high static pressure. This noise propagates through ducts which are directly connected to the residential area. Since the blower noise can be reduced only to some degree, it is necessary for the propagation paths to have enough noise attenuation. Acoustic properties of ducts are usually found by experimental methods but it is rather difficult and expensive to set up such test equipments. In this thesis, the design and the noise characteristics of TGV-K HVAC system are studied. Finite element method in accordance with experimental method is used to study the acoustic properties of TGV-K duct system.

  • PDF

음향파워 평형방법을 이용한 HVAC 시스템 소음예측 (Prediction of HVAC System Noise by Acoustic Power Balancing Method)

  • 홍진무;최태묵;김병희;조대승;김동해
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1306-1312
    • /
    • 2001
  • In this study. the acoustic power balancing method to analysis HVAC system noise is presented. The method can consider not only forward but also backward propagations of noise generated by the operation of air supply units and aerodynamical disturbance at duct elements. This can be done by estimating sound transmission and reflection properties of duct elements. and balancing acoustic powers of total HVAC system. To verify the accuracy of the presented method. numerical analysis for a HVAC system is carried out and the results are compared with those obtained by a traditional empirical method. suggested by National Environmental Balancing Bureau.

  • PDF

CAM 곡선 개선에 의한 차량용 공조기의 소음 저감 평가 (Evaluation for Noise Reduction of the HVAC by Modification of CAM Curve)

  • 정재은;정창용;서범준;정운창;오재응
    • 한국소음진동공학회논문집
    • /
    • 제21권9호
    • /
    • pp.787-797
    • /
    • 2011
  • The noise in a vehicle is an important factor for customers purchasing a car. Particularly, reduction of the noise that is generated from HVAC(heating, ventilation and air conditioning) is very important since it has considerable effects on interior noise. In general, identification of noise source is crucial to reduce noise level. The complex acoustic intensity method is widely used to obtain the accurate measurement and identification of noise source. Therefore, in the previous study, noise source of HVAC was identified through experimental approach using the complex acoustic intensity method. In this study, we are intended to confirm reduced level of noise by comparing the result between before and after modification of cam curve that is based on identified noise source of HVAC. It is found out that noise source of HVAC are motor and cam area using the complex acoustic intensity method in the previous study. We performed experiments to compare noise level between before and after modification of cam curve. Especially, it can be seen that complex acoustic intensity method using both active and reactive intensity is vital in devising a strategy for comparison to noise level. Also, the vector flow of acoustic intensity was investigated to identify sound intensity distributions and energy flow in the near field of HVAC.

복소음향인텐시티법을 이용한 HVAC의 소음원 검출 (Identification of Noise Source of the HVAC Using Complex Acoustic Intensity Method)

  • 양정직;이동주
    • 한국소음진동공학회논문집
    • /
    • 제20권11호
    • /
    • pp.1089-1096
    • /
    • 2010
  • The relation between the vibration induced from machinery and the radiated sound is complicated. Acoustic intensity method is widely used to obtain the accuracy of noise measurement and noise identification. In this study, as groundwork, the complex acoustic intensity method is performed to identify noise source and transmission path on different free space point source fields. As an industrial application, the complex acoustic intensity method is applied to HVAC to identify sound radiation characteristics in the near field. Experimental complex acoustic intensity method was applied to HVAC, it is possible to identify noise sources in complicated sound field characteristics which noise sources are related with each other, and certificate the validity of complex acoustic intensity. Especially, it can be seen that complex acoustic intensity method using both of active and reactive intensity is vital in devising a strategy for identification of noise. Also, the vector flow of acoustic intensity was investigated to identify sound intensity distributions and energy flow in the near field of HVAC.

사무소 건물의 공조설비소음 특성 (The Characteristics of HVAC Noise in Office Buildings)

  • 도영주;김동규;김흥식
    • 한국음향학회지
    • /
    • 제8권1호
    • /
    • pp.59-66
    • /
    • 1989
  • 공조설비소음의 특성을 파악하기 위하여 서울의 도심에 위치한 고층 사무소 건물을 대상으로 송풍기의 파워레벨과 취출구를 통한 실내소음레벨을 측정하였다. 또한 공조설비소음이 문제시되는 건물에 흡음챔버와 사이드브랜치를 설치하여 소음기의 감음성능을 평가하였다. 연구의 결과, 실내소음레벨은 송풍기 발생소음의 영향으로 500Hz 이하의 저주파수 대역에서 ISO의 허용 기준치인 NR40을 초과하였으며 흠음챔버는 넓은 대역의 주파수, 사이드브랜치는 특정공명주파수에서 감음효과가 크게 나타났다.

  • PDF

공기조화 취출구 소음의 평가요인에 관한 연구 (A Study on the Evaluation Factors for Diffuser Noise of HVAC)

  • 박현구;김항;김선우
    • 한국소음진동공학회논문집
    • /
    • 제16권2호
    • /
    • pp.149-155
    • /
    • 2006
  • There are various types of noise around us such as road traffic noise, aircraft noise and floor impact sound, equipment noise, etc. Researches on the noise criteria and the evaluation method for the diffuser noise of HVAC are insufficient. dB(A) and NC values represented in ASHRAE guide book are applied as a noise criteria for diffuser noise, which have some problems like that the values between dB(A) and NC have deviation even if the sound is same one. Therefore, the evaluation method should be considered and proposed based on the subjective responses. From these reasons, this study aimed to analyze the evaluation factors for the diffuser noise of HVAC reflected on the subjective responses by surveying vocabularies and grouping them with factor analysis.

공기조화 취출구 소음의 평가요인 설정에 관한 연구 (A Study on the Evaluation Factors for Diffuser Noise of HVAC)

  • 박현구;김항;김원식;김선우
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.349-354
    • /
    • 2005
  • There are various types of noise around us such as road traffic noise, aircraft noise and floor impact sound, equipment noise etc. Recently researches on the criteria to evaluate the noises have been progressed, however, researches on the noise criteria and evaluation method for the diffuser noise of HVAC are insufficient. dB(A) and NC values represented in ASHRAE guide book are applied as a noise criteria for diffuser noise, which have some problems like that the values between dB(A) and NC have deviation even if the sound is same one. Therefore, the evaluation method should be considered and proposed based on the subjective responses. From these reasons, this study aimed to analyze the evaluation factors for the diffuser noise of HVAC reflected on the subjective responses by surveying vocabularies and grouping them with factor analysis.

  • PDF