• Title/Summary/Keyword: HTS power cable

Search Result 216, Processing Time 0.029 seconds

Research for Installation and Operation of High Temperature Superconducting Cable System (고온 초전도 케이블 시스템 설치 밀 운전을 위한 연구)

  • Choi, Hyung-Sik;Sohn, Song-Ho;Hwang, Si-Dole
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.653-657
    • /
    • 2005
  • The commercial contract was made firstly in the world for one set of high temperature superconducting(HTS) cable system between buyer, Korea Electric Power Research Institute and seller, Sumitomo Electric Industries, Ltd. in August 2004. After fabrication, test and examination, the HTS cable system will be installed at the KEPRI's test field in Gochang, Jeonbuk province from the time of July 2005. KEPRI is preparing measurement and test facilities for field test of the HTS cable system and carrying out researches into the design and construction of superconducting cable test building, evaluation of cooling performance, measurement of AC loss, analysis of the quench phenomena due to excess current and means of linking the HTS cable system to the existing electric power supplying system. The constitution of, the method to install and the plan of test operation of the HTS cable system will be presented in this paper.

  • PDF

Cooling Test of The HTS Power Cable (초전도케이블 냉각시험)

  • 염한길;고득용;홍용주;김익생;김춘동;김도형
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.295-297
    • /
    • 2003
  • Cryogenic systems is requirement for the operation of HTS power cables. In general, HTS power cables require temperature below 77K, a temperature that can be achieved from the liquid nitrogen or sub-cooled LN2. HTS power cable is needed for sufficient refrigeration to overcome its low temperature heat loading. This loading typically comes in two forms : (1) heat leaks from the surroundings and (2) internal heat generation. This paper is a explanation for the cooling test of 10m HTS power cable.

  • PDF

Construction and Tests of 700A class HTS Power Cable Core (700A급 고온초전도 케이블코아 제작 및 평가)

  • 조전욱;하홍수;정종만;조영식;성기철;오상수;권영길;류강식
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.55-57
    • /
    • 2000
  • In this paper we present the results of tests for the high-Tc superconducting (HTS) power cable core. A prototype HTS cable cores have been constructed using Bi-2223 based Ag-sheathed HTS tapes. HTS cable cores has been tested at 77K with DC currents. Results shows that the cable cores carrying up to 700A DC and self-field effects are discussed.

  • PDF

Design of Termination Cryostat for HTS Power Cable (고온초전도 케이블 단말용 cryostat 설계)

  • 양형석;김승현;김동락;조승연;김도형;류희석;성기철
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.160-162
    • /
    • 2003
  • Termination cryostat for 22.9kV, 1.26kA-class HTS power cable has been designed. The cryostat consists of vacuum vessel, liquid nitrogen vessel, current lead and HTS power cable. The current lead and the HTS power cable are connected in liquid nitrogen vessel cooled by forced-circulation subcooled liquid nitrogen. The maximum total heat load of this cryostat is expected to be 150w. In this paper, the detailed design of the termination cryostat is mentioned.

  • PDF

Parametric Study of AC Current Lead for the Termination of HTS Power Cable

  • Kim, D.L;Kim, S.H.;S. Cho;H.S. Yang;Kim, D.H.;H.S. Ryoo;K.C. Seong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.107-110
    • /
    • 2003
  • High Temperature Superconductor (HTS) transmission cable can carry more than 2 to 5 times higher electricity and also obtain substantially lower transmission losses than conventional cables. Liquid nitrogen is to be used to cool the HTS power cable and its cost is much cheaper than the liquid helium used for the cooling of metal superconducting wire. In Korea the HTS power cable development project has been ongoing since July, 2001 with the basic specifications of 22.9kV, 50MVA and told dielectric type as the first 3-year stage. The cryogenic system of the HTS cable is composed of HTS cable cryostat termination and refrigeration system. Termination of HTS cable is a connecting part between copper electrical cable at room temperature and HTS cable at liquid nitrogen temperature. In order to design the termination cryostat, it is required that the conduction heat leak and Joule heating on the current lead be reduced, the cryostat be insulated electrically and good vacuum insulation be maintained during long time operation. Heat loads calculations on the copper current lead have been performed by analytical and numerical method and the feasibility study fer the other candidate materials has also been executed.

Cooling Condition of HTS Power Cable (고온초전도 전력케이블의 냉각조건)

  • 김동락;김승현;양형석;조승연;이제묘
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.35-36
    • /
    • 2002
  • High temperature super conducting(HTS) cable system for power transmission are under development that will be cooled by sub-cooled liquid nitrogen to provide cooling of the cable and termination. The target of the development during the first 3-years stage is 22.9kV/50MVA class and 30m length cold dielectric type 3-phase power cable. The essential features of the HTS cable cryogenic system and performance conditions for the design of power cable will be discussed.

  • PDF

Design and Operational Test of 22.9kV, 30m, 3phase HTS Cable Cooling System

  • Kim Do-Hyung;Kim Choon-Dong;Park In-Son;Jang Hyun-Man;Lee Su-Kil
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.2
    • /
    • pp.46-49
    • /
    • 2006
  • The 30m, 3phase, 22.9kV HTS (High Temperature Superconducting) power cable system was produced by LS Cable Ltd. The project aims for a commercial HTS cable. The designing, the manufacturing and the initial operating of HTS cable system were completed by 2004. Then, we have performed a long term operational test since February, 2005. This paper mainly reports the result of the HTS cable cooling operation.

Power System Security Control Method for Quench Characteristic of High-Temperature Superconducting Cable (초전도 케이블의 Quench 특성에 대한 계통안전성 제어방식)

  • Lee, Geun-Joon;Hwang, Si-Dol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.6
    • /
    • pp.29-35
    • /
    • 2005
  • This paper presents the basic quench protection idea for the HTS(High-Temperature Superconducting) cable. In Korea power system, the transfer capability of transmission line is limited by the voltage stability, HTS cable could be one of the countermeasure to enhance the transfer limit with its higher current capacity and lower impedance[1]. However, the quench characteristic makes not only HTS cable to loss its superconductivity, but also change the impedance of the transmission line and power system operating condition dramatically. This pheonominum threats HTS cable safety as well as power system security, therefore a proper protection scheme and security control counterplan have to be established before HTS cable implementation. In this paper, the quench characteristics of HTS cable for the fault current based on heat balance equation was established and a proper protection method regarding conventional protection system was suggested.

The Present Technical Trend and the Future Direction of HTS Power Cable R&D (고온초전도 전력케이블 개발동향 및 국내의 연구개발 방향)

  • Hwang, Si-Dole;Hyun, Ok-Bae;Choi, Hyo-Sang;Kim, Hye-Rim;Kim, Sang-Joon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2054-2056
    • /
    • 1999
  • We surveyed the recent technical trends concerning high-Tc superconducting(HTS) Power cable R&D around the world, and proposed the course the HTS power cable R&D in Korea should take. The HTS power cable R&D in Korea need be started as soon as posible with focusing on the development and field test of the economical HTS conductors.

  • PDF

Development of a Real-time Simulation Method for the Utility Application of Superconducting power Devices (PART 1 : HIS Power Cable) (초전도 전력기기의 계통적용을 위한 실시간 시뮬레이션 기법 개발 (PART 1 : 고온초전도 전력 케이블))

  • Kim, Jae-Ho;Park, Min-Won;Park, Dae-Jin;Kang, Jin-Ju;Cho, Jeon-Wook;Sim, Ki-Deok;Yu, In-Keun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.11
    • /
    • pp.1055-1060
    • /
    • 2006
  • High temperature superconducting(HTS) power cable is expected to be used for power transmission lines supplying electric power for densely populated cities in the near future. Since HTS power cable is capable of the high current density delivery with low power loss, the cable size can be compact comparing with the conventional cable whose capacity is same. In this paper, the authors propose the real time simulation method which puts a teal HTS wire into the simulated 22.9 kV utility grid system using Real Time Digital Simulator (RTDS). For the simulation analysis, test sample of HTS wire was actually manufactured. And the transient phenomenon of the HTS wire was analyzed in the simulated utility power grid. This simulation method is the world first trial in order to obtain much better data for installation of HTS power device into utility network.