• Title/Summary/Keyword: HTS pancake coil

Search Result 60, Processing Time 0.024 seconds

Development of HTS magnet cooled by solid nitrogen(I) (고화질소 냉각형 고온초전도마그네트 개발(I))

  • ;;;;;;Y.Iwasa
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.19-21
    • /
    • 2000
  • We are developing portable type HTS magnet system cooled by solid nitrogen. This system have recooling and recharging capabilities. In this paper, we report preliminary test results obtained from the experimental solid nitrogen system and pancake magnet would with Bi-2223/Ag tapes, respectively. The operation period was sensitively dependent on the vacuum rate n the cryostat, size of SUS tube for flowing N_{2}$, and liquid nitrogen to cool the cryostat. The fabricated coil I_{c}$was 75 A at 20 K in self field.

  • PDF

Characteristics of Surface flashover in LN2 (액체질소 중에서의 연면방전 특성)

  • 정종만;백승명;김상현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.1
    • /
    • pp.70-76
    • /
    • 2003
  • For the development of superconducting power apparatus, it is necessary to establish the dielectric technology in coolant like L$N_2$. Therefore in this paper we conducted experiment of surface flashover that could occur in the windings of HTS transformer which will be developed in the pancake coil type. First, we distinguished two types of surface flashover by electrode alignment, such as parallel and vertical, and then compared with each characteristics of surface flashover. The flashover voltage was more affected by thickness of spacer than by surface length when the thickness of spacer is over 1 mm. And the surface flashover with metallic particle attached on the spacer was tested, it was affected by the particle position. The more close to the electrodes, the worse the characteristics. Also the experiment was conducted when the electrode was immersed in liquid nitrogen(L$N_2$) partially. The surface flashover characteristics of spacer was, when immersed partially in 50%, rapidly decreased.

Fabrication of 6 double pancakes Bi-2223 HTS magnet (6 더블팬케이크 Bi-2223 고온초전도 마그네트 제작)

  • Ha, Hong-Soo;Jang, Hyun-Man;Lee, Nam-Jin;Oh, Sang-Soo;Ha, Dong-Woo;Ryu, Kang-Sik;Lee, Hai-Gun;Lee, Jun-Suck
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.373-377
    • /
    • 1999
  • HTS magnet operated at 20${\sim}$40 K was fabricated using three pieces of 100 m Bi-2223 high temperature superconductors fabricated by powder-in-tube process. It was composed of 6 double pancakes with 75 ID. and 113 OD. connected by lab splice. Coil I$_c$ of each DP.(double pancake) obtained for a 140 turn, fabricated using react and wind procedure was 6${\sim}$8 A at 77 K, self field. The maximum field was measured 0.06 T at lop = 5 A, 77 K. The joint resistance due to lap splice of HTS tapes affect badly to operate HTS magnet with persistent current mode, total effective magnet resistance included lap splice was 55 ${\mu}$ ${\omega}$ at 77 K.

  • PDF

A study on the current limiting characteristics and magnetic analysis of the non-inductively wound coil (타입에 따른 무유도 권선형 코일의 한류 특성연구 및 자장해석)

  • Jang, Jae-Young;Park, Dong-Keun;Chang, Ki-Sung;Na, Jin-Bae;Kim, Won-Cheol;Chung, Yood-Do;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.1
    • /
    • pp.25-29
    • /
    • 2009
  • To reduce the power loss in normal state, non-inductively wound high temperature superconducting (HTS) coils are used for fault current limiter (FCL) application. Non-inductively wound coils can be classified into two types: solenoid type and pancake type. These two types have different electrical and thermal and mechanical characteristics due to their winding structure difference. This paper deals with the current limiting characteristics, magnetic field analysis of the two coils. Simulation using finite element method (FEM) was used to analyze the magnetic field distribution and inductance of the coils. Short circuit test using stabilizer-free coated conductor (CC) was also carried out. We can compare the characteristics of the two types of coil by using the data obtained from simulation and short circuit test. We confirmed the feasibility of FCL application by the analysis about the characteristics of non-inductively wound coil using CC.

Current Limitation by Bi-2223 Bifilar Winding Coils

  • Ahn Min Cheol;Bae Duck Kweon;Park Dong Keun;Yang Seong Eun;Yoon Yong Soo;Ko Tae Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.2
    • /
    • pp.31-34
    • /
    • 2005
  • There are many kinds of high temperature superconducting (HTS) application using Bi-2223 tape which is the most commercialized HTS material. Also, resistive superconducting fault current limiters (SFCLs) have been developed using many kinds of superconducting material such as YBCO thin film, Bi-2212 bulk and so on. However, SFCL using Bi-2223 tape has never been developed. This paper deals with the feasibility study on SFCL using Bi-2223 wire. The over-current behaviors of Bi-2223 short-length sample were measured. To make the resistive SFCL, two small-scale bifilar winding modules using 7m Bi-2223 wire were fabricated; i.e. solenoid type bifilar coil and pancake type one. The short-circuit tests of the coils were successfully performed up to 16 V$_{rms}$ From these tests, the current limiting capabilities of Bi-2223 bifilar coils were confirmed and current limiting performances between two winding types were compared. In addition, the feasibility of resistive SFCL using another HTS wire, i.e. YBCO coated conductor, was also investigated.

Thermal and structural analysis of a cryogenic conduction cooling system for a HTS NMR magnet

  • In, Sehwan;Hong, Yong-Ju;Yeom, Hankil;Ko, Junseok;Kim, Hyobong;Park, Seong-Je
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.59-63
    • /
    • 2016
  • The superconducting NMR magnets have used cryogen such as liquid helium for their cooling. The conduction cooling method using cryocoolers, however, makes the cryogenic cooling system for NMR magnets more compact and user-friendly than the cryogen cooling method. This paper describes the thermal and structural analysis of a cryogenic conduction cooling system for a 400 MHz HTS NMR magnet, focusing on the magnet assembly. The highly thermo-conductive cooling plates between HTS double pancake coils are used to transfer the heat generated in coils, namely Joule heating at lap splice joints, to thermal link blocks and finally the cryocooler. The conduction cooling structure of the HTS magnet assembly preliminarily designed is verified by thermal and structural analysis. The orthotropic thermal properties of the HTS coil, thermal contact resistance and radiation heat load are considered in the thermal analysis. The thermal analysis confirms the uniform temperature distribution for the present thermal design of the NMR magnet within 0.2 K. The mechanical stress and the displacement by the electromagnetic force and the thermal contraction are checked to verify structural stability. The structural analysis indicates that the mechanical stress on each component of the magnet is less than its material yield strength and the displacement is acceptable in comparison with the magnet dimension.

V-t and Barrier Characteristics for HTS Transformer Insulation Design (고온초전도변압기 절연설계를 위한 격벽효과와 수명특성)

  • Joung, Jong-Man;Baek, Sung-Myeong;Kim, Young-Seok;Kwak, Dong-Soon;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05e
    • /
    • pp.61-64
    • /
    • 2003
  • In the response to an increasing demand for electrical energy, much effort aimed to develop and commercialise HTS power equipments is going on around the world. For the development, it is necessary to establish the dielectric technology in $LN_2$. Hence many types of dielectric tests should be carried out to understand the dielectric phenomena at cryogenic temperature and to gather various dielectric data. Among the many types dielectric tests, the barrier effect were conducted with the simulated electrode after analysing the insulating configuration of the pancake coil type HTS transformer. The influence of a barrier on the dielectric strength was measured according to the size and the position of the barrier. It was shown that the effectiveness, the ratio of the breakdown voltage in presence of barrier to the voltage without barrier, is highest when the barrier is placed at the needle electrode side. And the barrier effect was not depend on the electrode array. The life time to breakdown with decreasing the applied voltage was increased remarkably having wide error band but the shape parameter in Weibull distribution was almost constant.

  • PDF

Comparison of Electrical Characteristics of Pancake Coil and Solenoid Coil using HTS Tape (고온초전도선재를 이용한 팬케이크 코일과 솔레노이드 코일의 전기적 특성 비교)

  • Park Myungjin;Lee Sangsoo;Cha Gueesoo;Lee Jikwang
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.773-775
    • /
    • 2004
  • 최근 높은 임계전류를 지닌 고온초전도선재를 이용한 초전도 전력기기의 개발이 활발히 이루어지고 있다. 고온초전도선재의 임계전류는 자장에 대한 의존성을 지니고 있으며 이로 인해 고온초전도선재가 코일의 형태로써 초전도 전력기기의 개발에 이용되는 경우, 권선 방식에 따라 다른 전기적 특성을 지니게 된다. 이러한 특성은 초전도선재의 전력기기의 효율에 큰 영향을 미치므로 권선 방식에 따른 코일의 특성을 연구하는 것은 초전도선재를 이용한 전력기기의 효율을 높이는데 있어서 중요한 의미를 갖는다. 본 논문에서는 권선 방식에 따른 코일의 특성을 비교하기 위해 동일한 턴 수와 사용 선재길이를 가진 팬케이크 코일과 솔레노이드 코일을 설계, 제작하고 두 코일의 임계전류를 측정하였다. 또한 인가전류에 대한 두 코일의 전압, 저항특성과 교류손실 특성을 측정하고 비교하였다. 측정결과, 두 코일의 임계전류는 솔레노이드 코일이 109A로 팬케이크 코일에 비해 약 $36\%$ 더 높았다. 코일에 가해준 인가전류가 증가함에 따라 코일에서 발생하는 전압 중 손실에 관련된 저항성 성분의 전압이 변화하고 있음을 확인하였다. 또한 교류손실은 인가 전류의 피크값이 팬케이크 코일의 임계전류 이하인 구간에서 팬케이크 코일이 솔레노이드 코일의 교류손실보다 9배 크며, 팬케이크와 솔레노이드의 임계전류 사이에서는 8.3배 컸다.

  • PDF

Analysis of Stress by Electromagnetic Force in a Small HTS Single Pancake Coil (소형 고온초전도 싱글 팬케이크 코일의 전자기력에 의한 Stress 해석)

  • Park, Myung-Jin;Kwak, Sang-Yeop;Lee, Seoung-Wook;Kim, Woo-Seok;Hahn, Seoung-Young;Choi, Kyeong-Dal;Han, Jin-Ho;Lee, Ji-Kwang;Jung, Hyun-Kyo;Seong, Ki-Chul;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.869-870
    • /
    • 2006
  • 일반적으로 초전도선재를 이용한 코일의 전자기력에 의한 스트레스 계산에 있어서는 코일의 전류밀도분포와 자속밀도분포의 선형적인 관계를 이용하나 아직까지 초전도체 특유의 비선형적인 특성을 이용한 스트레스의 계산은 미비하다. 본 논문에서는 13턴의 소형 싱글팬케이크 코일을 초전도의 특성을 적용해 해석하고 인가전류가 $0.3I_c,\;0.5I_c,\;0.8I_c$ 인 경우에 대해서 전자기력에 의한 코일의 스트레스를 유한요소법으로 계산하였다. 계산 결과 코일의 radial stress와 hoop stress는 모두 코일의 자속밀도분포와 유사한 모습을 나타내었다.

  • PDF

Magnetic Field Calculation of Toroidal Winding with Circular Section (단면이 원형인 토로이드 권선의 자속밀도 계산)

  • Lee, Sang-Jin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.1
    • /
    • pp.28-31
    • /
    • 2010
  • A magnetic field calculation method for toroidal type winding which has circular section was developed. At first, the equation for magnetic field by single filament coil was extended using numerical integration to estimate the entire interesting region of solenoid, especially winding region itself. And then, the magnetic field by toroidal arrangement of solenoids was computed with a coordinate transformation of vector fields. The superconducting magnet with toroidal arrangement can be made up of several tens of solenoid type double pancake windings for some applications such as superconducting magnetic energy storage system(SMES). In this system, the field calculation on the high-Tc superconducting(HTS) tape itself is very important because the entire system can be reached to a fault by magnetic stress of conductor or the critical current of superconducting tape can be dramatically reduced under its self field condition. To make matters worse, 3-dimensional analysis is indispensable for this type of magnet and the most of commercial programs with finite element method can be taken too much time for analysis and design. In this paper, a magnetic field calculation method for toroidal type winding with circular section was induced.