• 제목/요약/키워드: HTS Cable

검색결과 280건 처리시간 0.03초

154kV급 고온초전도 전력케이블의 전기절연 설계 (Insulation Design for a 154 kV Class HTS Power Cable)

  • 곽동순;천현권;최재형;김해종;조전욱;윤문수;김상현
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제8권1호
    • /
    • pp.29-33
    • /
    • 2006
  • A 154 kV class high temperature superconducting (HTS) power cable system is developing in Korea. For insulation design or this cable, the grading method of insulating paper is proposed. The use of graded insulation gives improved bending properties of the cable. Therefore, we discussed the electrical stress distribution and calculation for grading insulation design of a HTS cable. Also. the basic insulation design of 154 kV class HTS power cable was done.

사고전류 제한형 초전도케이블 제작을 위한 초전도 선재 선정에 관한 연구 (Study on Selection of HTS Wire for Fabrication of Fault Current-limiting Type HTS Cables)

  • 허성욱;김태민;한병성;두호익
    • 한국전기전자재료학회논문지
    • /
    • 제26권12호
    • /
    • pp.904-908
    • /
    • 2013
  • When an abnormal condition occurs due to a fault current at a consumer location where electricity is supplied through a high-capacity and high-$T_c$ superconducting(HTS) cable, the HTS cable would be damaged if there is no appropriate measure to protect it. Therefore, appropriate measures are needed to protect HTS cables. The fault-current-limiting HTS cable that was suggested in this study performs an ideal transport current function in normal operations and plays a role in limiting a fault current in abnormal operation (i.e., when a fault current is applied). It has a structure that facilitated its self-current-limiting ability through device change and reconfiguration in the existing HTS cable without extra switching equipment. To complete this structure, it is essential to investigate about the selection of the superconducting wire. Therefore, in this paper, HTS wire using two types of different stabilization layer is compared and examined the stability and current limiting properties under the existence of a fault current.

송전급 초전도케이블 신뢰성평가를 위한 시험방법 (Reliability Test Recommendations of Transmission Level HTS Power Cable)

  • 박진우;양병모;강지원;조전욱;이수길;심기덕;김성래
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제12권3호
    • /
    • pp.29-33
    • /
    • 2010
  • For last 10 years, there are big progress and many efforts in the development of HTS power equipments by some country including South Korea. Especially HTS cable system is the strongest candidate among them from the viewpoint of applying to real grid, because of the feature of it, compact and large capacity. In South Korea, transmission level 154kV, the world top voltage class, HTS cable system was installed and has been tested in KEPCO Gochang Underground Cable Test Field since the early of 2010 in order to meet test requirements made by KEPCO, the only grid company in South Korea. The type test of it will be completed by October 2010 and subsequently long-term load cycle test will be performed during 6 months. Also in the near future, KEPCO has a plan to demonstrate transmission level HTS cable system in real grid, in order to meet practical requirements and confirm the feasibility of it. This paper says the test plan of transmission level 154kV HTS cable system and the way how to test it.

Cryogenic cooling system for HTS cable

  • Yoshida, Shigeru
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제19권2호
    • /
    • pp.1-8
    • /
    • 2017
  • Recently, Research and development activity of HTS (High Temperature Superconducting) power application is very progressive worldwide. Especially, HTS cable system and HTSFCL (HTS Fault current limiter) system are proceeding to practical stages. In such system and equipment, cryogenic cooling system, which makes HTS equipment cooled lower than critical temperature, is one of crucial components. In this article, cryogenic cooling system for HTS application, mainly cable, is reviewed. Cryogenic cooling system can be categorized into conduction cooling system and immersion cooling system. In practical HTS power application area, immersion cooling system with sub-cooled liquid nitrogen is preferred. The immersion cooling system is besides grouped into open cycle system and closed cycle system. Turbo-Brayton refrigerator is a key component for closed cycle system. Those two cooling systems are focused in this article. And, each design and component of the cooling system is explained.

Bi-2223/Ag 데이프 및 Protype HTS 케이블의 상전도 영역전파 특성 (Normal Zone Propagation Properties of Bi-2223/Ag Tape and Prototype HTS Cable)

  • 김상현;이병성;김영석;장현만;백승명;한철수
    • 한국전기전자재료학회논문지
    • /
    • 제14권4호
    • /
    • pp.345-350
    • /
    • 2001
  • Normal zone propagaton(NZP) properties were investigated on Bi-223/Ag tapes and prototype HTS cable. NZP experiments in tape were conducted in temperatures from 45K to 77K in zero field. Prototype HTS cable was molded using epoxy and the experiments were carried out under adiabatic condition in LN$_2$. NZP velocities in tapes with tow conditions of DC and AC currents were almost same at each temperature. NZP velocity in prototype HTS cable was 1.9-2.4 cm/sec in LN$_2$. Numerical analysis was carried out by a one-dimensional equation of heat balance. The simulation results of NZP velocity in Bi-2223/Ag tapes were similar to the experimental results.

  • PDF

초전도 전력케이블의 전류 불평형에 관한 연구 (A Study on the Unbalanced Current Distribution of HTS Power Cable)

  • 김재호;박충화
    • 한국안전학회지
    • /
    • 제27권6호
    • /
    • pp.43-47
    • /
    • 2012
  • The unbalance currents flow the High Temperature Superconducting (HTS) power cable caused by asymmetrical fault, harmonic distortion and unbalanced load. That problem causes additional loss and leakage field in the HTS power cable, and deteriorates the electric power quality and stability. In addition, large amounts of unbalanced current can cause negative sequence and ground relays to operate. This paper presents an analysis unbalanced three-phase current distribution in HTS power cable caused by unbalanced load condition and grounding methods using PSCAD/EMTDC. The results obtained through the analysis would provide important data for the design of HTS power cables and valid information for their installation in power system.

고온초전도 케이블의 전기절연 설계 및 시험평가 (Electrical Insulation Design and Experimental Results of a High-Tc Superconducting Cable)

  • 곽동순;천현권;최재형;김해종;조전욱;김상현
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권12호
    • /
    • pp.640-645
    • /
    • 2006
  • A 22.9kV/50MVA class high temperature superconducting(HTS) power cable system was developed in Korea. For the optimization of electrical insulation design for a HTS cable, it is necessary to investigate the ac breakdown impulse breakdown and partial discharge inception stress of the liquid nitrogen/laminated polypropylene paper(LPP) composite insulation system. They were used to insulation design of the model cable for a 22.9kV class HTS power cable and the model cable was manufactured. The insulation test of the manufactured model cable was evaluated in various conditions and was satisfied standard technical specification in Korea. Base on these experimental data, the single and 3 phase HTS cable of a prototype were manufactured and verified.

고온초전도 케이블 단말용 cryostat 설계 (Design of Termination Cryostat for HTS Power Cable)

  • 양형석;김승현;김동락;조승연;김도형;류희석;성기철
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 학술대회 논문집
    • /
    • pp.160-162
    • /
    • 2003
  • Termination cryostat for 22.9kV, 1.26kA-class HTS power cable has been designed. The cryostat consists of vacuum vessel, liquid nitrogen vessel, current lead and HTS power cable. The current lead and the HTS power cable are connected in liquid nitrogen vessel cooled by forced-circulation subcooled liquid nitrogen. The maximum total heat load of this cryostat is expected to be 150w. In this paper, the detailed design of the termination cryostat is mentioned.

  • PDF

The Effect of Butt Gap in Insulation Properties for a HTS Cable

  • D.S.Kwag;Kim, Y.S.;Kim, H.J.;Kim, S.H.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권3호
    • /
    • pp.43-47
    • /
    • 2003
  • For an electrical insulation design of HTS cable, it is important to understand the dielectric characteristics of insulation materials in $LN_2$ and the insulation type. Generally, the electrical insulation of HTS Cable is classified into two types of the composite insulation and solid insulation type. In this research, we selected the insulation paper/$LN_2$ composite insulation type for the electric insulation of a HTS cable, and studied electric insulation characteristics of synthetic Laminated Polypropylene Paper (LPP) in liquid nitrogen ($LN_2$) for the application to high temperature superconducting (HTS) cable. Furthermore, we compared the breakdown characteristics of the butt gap and bended mini-model cable. It is necessary to understand the winding parameter of insulation paper/$LN_2$ composite insulation.

배전급 초전도 케이블의 상전도계통 적용시 보호협조 특성연구 (A Study on the characteristics about the Protective Coordination in application of conductive system of Superconductor Cable)

  • 이현철;류경우;황시돌;손송호;임지현;이근준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.184-186
    • /
    • 2008
  • In this paper, the protective coordination studied in application of HTS cable in conductive system. The protective coordination analyzed to HTS cable using the PSCAD/EMTDC. HTS cable simulated to be appling SFCL or not to be. The result was showed to be protective coordination graph in HTS cable and OCR curve at the power system fault. This graph was proposed to be power operation standard at the HTS cable fault.

  • PDF