• Title/Summary/Keyword: HT1080 cells

Search Result 107, Processing Time 0.028 seconds

Study on Study on Antitumor Activity of Kamisamchulsamja-tang (가미삼출삼자탕의 항암활성에 관한 연구)

  • Kim Seong Eon;Lee Hyo Jeong;Kim Dong Hee;Song Gyu Yong;Kim Sung Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.4
    • /
    • pp.667-673
    • /
    • 2002
  • The purpose of this study was to investigate the effect of Kamisamchulsamja-tang (KSST) water extract on the antitumor activity. The results were summarized as follows: KSST extract exhibited a weak cytotoxicity against HT1080, A549, SK-OV-3, B16-F10 and SK-MEL-2 cells. KSST extract showed a inhibitoty effect on DNA topoisomerase I from calf thymus in a dose-dependent manner. Also, KSST extract showed antiadhesive effect on HT1080 cells but didn't showed on A549 cells to complex extracellular matrix. In pumonary colonization assay, a number of colonies in the lungs were decreased significantly in KSST treated group as compared with control group. In vitro neovascularization assays, angiogenesis was significantly inhibited in KSST treated group than control group. In CAM assay, KSST extract inhibited angiogenesis significantly at 15㎍/egg concentration as compared with control. From the above results it was concluded that KSST showed antitumor effect through the antimetastatic effect. So it is expected to be clinically helpful on the prevention of metastasis of cancer.

Seahorse-derived peptide suppresses invasive migration of HT1080 fibrosarcoma cells by competing with intracellular α-enolase for plasminogen binding and inhibiting uPA-mediated activation of plasminogen

  • Kim, Yong-Tae;Kim, Se-Kwon;Jeon, You-Jin;Park, Sun Joo
    • BMB Reports
    • /
    • v.47 no.12
    • /
    • pp.691-696
    • /
    • 2014
  • ${\alpha}$-Enolase is a glycolytic enzyme and a surface receptor for plasminogen. ${\alpha}$-Enolase-bound plasminogen promotes tumor cell invasion and cancer metastasis by activating plasmin and consequently degrading the extracellular matrix degradation. Therefore, ${\alpha}$-enolase and plasminogen are novel targets for cancer therapy. We found that the amino acid sequence of a peptide purified from enzymatic hydrolysates of seahorse has striking similarities to that of ${\alpha}$-enolase. In this study, we report that this peptide competes with cellular ${\alpha}$-enolase for plasminogen binding and suppresses urokinase plasminogen activator (uPA)-mediated activation of plasminogen, which results in decreased invasive migration of HT1080 fibrosarcoma cells. In addition, the peptide treatment decreased the expression levels of uPA compared to that of untreated controls. These results provide new insight into the mechanism by which the seahorse-derived peptide suppresses invasive properties of human cancer cells. Our findings suggest that this peptide could emerge as a potential therapeutic agent for cancer.

Galangin and Kaempferol Suppress Phorbol-12-Myristate-13-Acetate-Induced Matrix Metalloproteinase-9 Expression in Human Fibrosarcoma HT-1080 Cells

  • Choi, Yu Jung;Lee, Young Hun;Lee, Seung-Taek
    • Molecules and Cells
    • /
    • v.38 no.2
    • /
    • pp.151-155
    • /
    • 2015
  • Matrix metalloproteinase (MMP)-9 degrades type IV collagen in the basement membrane and plays crucial roles in several pathological implications, including tumorigenesis and inflammation. In this study, we analyzed the effect of flavonols on MMP-9 expression in phorbol-12-myristate-13-acetate (PMA)-induced human fibrosarcoma HT-1080 cells. Galangin and kaempferol efficiently decreased MMP-9 secretion, whereas fisetin only weakly decreased its secretion. Galangin and kaempferol did not affect cell viability at concentrations up to $30{\mu}M$. Luciferase reporter assays showed that galangin and kaempferol decrease transcription of MMP-9 mRNA. Moreover, galangin and kaempferol strongly reduce $I{\kappa}B{\alpha}$ phosphorylation and significantly decrease JNK phosphorylation. These results indicate that galangin and kaempferol suppress PMA-induced MMP-9 expression by blocking activation of NF-${\kappa}B$ and AP-1. Therefore, these flavonols could be used as chemopreventive agents to lower the risk of diseases involving MMP-9.

Ginseng Intestinal Bacterial Metabolite IH901 as a New Anti-Metastatic Agent

  • Hideo Hasegawa;Sung, Jong-Hwan;Huh, Jae-Doo
    • Archives of Pharmacal Research
    • /
    • v.20 no.6
    • /
    • pp.539-544
    • /
    • 1997
  • Anti-metastatic activities of IH901, an intestinal bacterial metabolic derivative formed from Ginseng protopanaxadiol saponins, was determined in vitro and in vivo. Under in vitro conditions, IH901 inhibited the migration of bovine aortic endothelial cells 25 times stronger than suramin and suppressed the invasion of HT1080 human fibrosarcoma cells into reconstituted basement membrane components of Matrigel 1000 times stronger than RGDS peptide. IH901 also showed inhibitory effect on type-IV collagenase secretion from HT 1080 cells and platelet aggregation. When the anti-metastatic activity of IH901 was evaluated in comparison with that of 5-FU using a spontaneous lung metastatic model of Lewis lung carcinoma, the administration of IH901 (10 mg/kg p. o.) to tumor-bearing mice led to a significant decrease in lung metastasis (43% of untreated control), which was slightly more effective than that obtained with 5-FU (56% of control). Thus, IH901 seems to exhibit its anti-metastatic activity partly through the inhibition of tumor invasion which results from the blockade of type IV collagenase secretion and also through anti-platelet and anti-angiogenic activities.

  • PDF

Effects of Trichosanthes kirilowii Extract against Angiogenesis and Various Tumor Cells' Growth (천화분 추출물이 혈관신생 및 암세포성장에 미치는 영향)

  • Kim, Dong-Woo;Lee, Jong-Hoon;Yoo, Hwa-Seung;Cho, Jung-Hyo;Lee, Yeon-Weol;Son, Chang-Gue;Cho, Chong-Kwan
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.2
    • /
    • pp.490-499
    • /
    • 2008
  • Objectives : This study was aimed to elucidate the effects of Trichosanthes kirilowii extract (TKE) on the angiogenesis and growth of tumor cells. Methods : Tube formation assay was performed by using human umbilical vein endothelial cells (HUVEC), and anchorage dependent colony assay was performed by using B16-F10 melanoma, Hep G2 and HT1080, CT-26 and SNU-1 cells. Results : For HUVEC, TKE at a level of more than 100 ${\mu}g/m{\ell}$ suppresses cell growth. For HUVEC at 100 ${\mu}g/m{\ell}$ and greater TKE density, the formation of tubes was suppressed in a dose-dependant manner. TKE controls the colony formations of B16-F10 melanoma cells, CT 26 cells, and Hep G2 cells, and its effect is proportional to density. In HT1080 cells and SNU-1 cells, formation is suppressed regardless of density. Conclusions : From these results, it could be concluded that TKE has significant properties on anti-angiogenesis and growth inhibiting of tumor cells. It is suggested that TKE will be a good candidate for new drugs or therapeutics for anti-angiogenesis.

  • PDF

Isolation and Antioxidant Activity of Methyl Aconitates from Arctic Red Alga Polysiphonia stricta (극지 홍조류 Polysiphonia stricta에서 분리된 methyl trans-aconitate 유도체들과 항산화 활성)

  • Lee, Jung Im;Kong, Chang-Suk;Baek, Seung Oh;Seo, Youngwan
    • Ocean and Polar Research
    • /
    • v.36 no.3
    • /
    • pp.247-254
    • /
    • 2014
  • In our continuing study on the antioxidant activity of Polysiphonia stricta, its crude extract was fractionated into n-hexane, 85% aqueous methanol (85% aq.MeOH), n-butanol (n-BuOH), and water fractions according to solvent polarity. The solvent fractions were evaluated for their potential to inhibit lipid peroxidation and reactive oxygen species (ROS) production in HT 1080 cells. The n-BuOH fraction most strongly inhibited both lipid peroxidation and ROS production in HT 1080 cells. The n-BuOH fraction was further separated by repeated silica gel column chromatography and RP-HPLC to give methyl aconitates (2 and 3). The chemical structure of isolated compounds was determinated by NMR spectral analysis.

Chemical Modification of Alisol B 23-acetate and Their Cytotoxic Activity

  • Lee, Sang-Myung;Min, Byung-Sun;Bae, Ki-Hwan
    • Archives of Pharmacal Research
    • /
    • v.25 no.5
    • /
    • pp.608-612
    • /
    • 2002
  • The twelve-protostane analogues were synthesized from alisol B 23-acetate and assessed for their in vitro antitumor activity against six different human and murine tumor cell lines. Of the compounds synthesized, 23S-acetoxy-24R(25)-epoxy-11$\beta$,23S-dihydroxyprotost-13(17)-en-3-hy-droxyimine (12) exhibited significant cytotoxic activities against A549, SK-OV3, B16-F10, and HT1080 tumor cells with $ED_{50}/$ values of 10.0, 8.7 ,5.2, and 3.1 ${\mu}g$/ml, respectively. Furthermore, 23S-acetoxy-13(17),24R(25)-diepoxy-11$\beta$-hydroxyprotost-3-one (5), 13(17),24R(25)-diepoxy-11$\beta$, 23S-dihydroxyprotostan-3-one (6), 24R,25-epoxy-11$\beta$,23S-dihydroxyprotost-13(17)-en-3-one (7), and 11$\beta$,23S,24R,25-tetrahydroxyprotost-13(17)-en-3-one (9) showed moderate cytotoxic activities against 816-F10 and HT1080 tumor cells. These results mean that a hydroxyimino group at C-3 position in the protostane-type terpene enhances cytotoxic activity.

Aesculetin Inhibits Cell Invasion through Inhibition of MMP-9 Activity and Antioxidant Activity (Aesculetin의 항산화 활성과 MMP-9 활성 억제를 통한 암세포 침윤 억제)

  • Hong, Sugyeong;Kim, Moon-Moo
    • Journal of Life Science
    • /
    • v.26 no.6
    • /
    • pp.673-679
    • /
    • 2016
  • The development of safe and effective anti-cancer compounds has been seriously required to prevent and treat development of tumor in recent years. Among them, natural compounds derived traditional medicinal stuffs have been paid to attention as an anti-cancer candidate. In this study, aesculetin is a main component of a widely known as a medicinal stuff. It was reported that aesculetin has various biological effects such as anti-inflammatory and anti-bacterial, but its effect related to cell invasion was not discovered. Therefore, in this study, the effect of aesculetin on antioxidant and matrix metalloproteases (MMPs) was investigated in human fibrosarcoma cells, HT1080. First of all, aesculetin showed the scavenging activity of DPPH radical and reducing power in a dose dependent manner. As a result of cytotoxicity, the nontoxic concentration of aesculetin was below 2 μM in HT1080 cells performed by MTT assay. In addition, aesculetin displayed the inhibitory effect on MMP-9 activity related to cell invasion in experiment carried out by gelatin zymography assay. Furthermore, aesculetin increased the expression level of TIMP-1 but decreased the expression level of MMP-9 stimulated with PMA in western blot assay. Furthermore, aesculetin remarkably inhibited cell invasion related to metastasis a dose dependent manner. Above results suggest that aesculetin could exert chemopreventive effect through inhibition of activity and expression of MMP-9 related to cell invasion.

Inhibitory Effect of Naringenin on MMP-9 Activity and Expression in HT-1080 Cells (Naringenin이 NF-$\kappa$B, AP-1 억제를 통한 MMP-9 활성 및 발현 억제 효과)

  • Chae, Soo-Chul;Kho, Eun-Gyeong;Seo, Eun-Sun;Ryu, Geun-Chang;Na, Myung-Suk;Kim, In-Suk;Lee, Jong-Bin
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.1
    • /
    • pp.58-65
    • /
    • 2009
  • The chemopreventive effects of naringenin derived from citrus on tumor migration and the possible mechanisms involved in this protection were investigated in HT-1080 tumor cells. In this study, we found that naringenin reduced phorbol 12-myristate 13-acetate (PMA)-enhanced matrix metalloproteinases (MMP)-9 activation in a dose-dependant manner and further inhibited HT-1080 cell migration. In addition, naringenin suppressed PMA-enhanced expression of MMP-9 protein, mRNA and transcription activity levels through suppression of nuclear factor $\kappa$B (NF-$\kappa$B) activation and activator protein-1 (AP-1) translocation without changing tissue inhibitor of metalloproteinase (TIMP)-1 level. Therefore, our results suggested that the inhibitory effects of naringenin on MMP-9 activation, relation of tumor migration in vitro possibly involve mechanisms related to its ability to suppress PMA-enhanced MMP-9 gene and protein expression through NF-$\kappa$B activation and AP-1 translocation. Overall, naringenin may be a valuable anti-invasive drug candidate for cancer therapy.